ترغب بنشر مسار تعليمي؟ اضغط هنا

K-corrections and filter transformations in the ultraviolet, optical, and near infrared

61   0   0.0 ( 0 )
 نشر من قبل Michael Blanton
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Template fits to observed galaxy fluxes allow calculation of K-corrections and



قيم البحث

اقرأ أيضاً

88 - S. J. Curran , J. P. Moss 2019
A simple estimate of the photometric redshift would prove invaluable to forthcoming continuum surveys on the next generation of large radio telescopes, as well as mitigating the existing bias towards the most optically bright sources. While there is a well known correlation between the near-infrared K-band magnitude and redshift for galaxies, we find the K-z relation to break down for samples dominated by quasi-stellar objects (QSOs). We hypothesise that this is due to the additional contribution to the near-infrared flux by the active galactic nucleus (AGN), and, as such, the K-band magnitude can only provide a lower limit to the redshift in the case of active galactic nuclei, which will dominate the radio surveys. From a large optical dataset, we find a tight relationship between the rest-frame (U-K)/(W2-FUV) colour ratio and spectroscopic redshift over a sample of 17,000 sources, spanning z ~ 0.1 - 5. Using the observed-frame ratios of (U K)/(W2-FUV) for redshifts of z > 1, (I-W2)/(W3-U) for 1 < z < 3 and (I-W2.5)/(W4-R) for z > 3, where W2.5 is the 8.0 micron magnitude and the appropriate redshift ranges are estimated from the W2 (4.5 micron) magnitude, we find this to be a robust photometric redshift estimator for quasars. We suggest that the rest-frame U-K colour traces the excess flux from the AGN over this wide range of redshifts, although the W2-FUV colour is required to break the degeneracy.
162 - S. Bilir , S. Ak , S. Karaali 2007
We present colour transformations for the conversion of the {em 2MASS} photometric system to the Johnson-Cousins $UBVRI$ system and further into the {em SDSS} $ugriz$ system. We have taken {em SDSS} $gri$ magnitudes of stars measured with the 2.5-m t elescope from $SDSS$ Data Release 5 (DR5), and $BVRI$ and $JHK_{s}$ magnitudes from Stetsons catalogue and citet{Cu03}, respectively. We matched thousands of stars in the three photometric systems by their coordinates and obtained a homogeneous sample of 825 stars by the following constraints, which are not used in previous transformations: 1) the data are de-reddened, 2) giants are omitted, and 3) the sample stars selected are of the highest quality. We give metallicity, population type, and transformations dependent on two colours. The transformations provide absolute magnitude and distance determinations which can be used in space density evaluations at short distances where some or all of the {em SDSS} $ugriz$ magnitudes are saturated. The combination of these densities with those evaluated at larger distances using {em SDSS} $ugriz$ photometry will supply accurate Galactic model parameters, particularly the local space densities for each population.
Accurate photometric redshift (photo-$z$) estimates are essential to the cosmological science goals of the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST). In this work we use simulated photometry for mock galaxy catalogs to explore how LSST photo-$z$ estimates can be improved by the addition of near-infrared (NIR) and/or ultraviolet (UV) photometry from the Euclid, WFIRST, and/or CASTOR space telescopes. Generally, we find that deeper optical photometry can reduce the standard deviation of the photo-$z$ estimates more than adding NIR or UV filters, but that additional filters are the only way to significantly lower the fraction of galaxies with catastrophically under- or over-estimated photo-$z$. For Euclid, we find that the addition of ${JH}$ $5{sigma}$ photometric detections can reduce the standard deviation for galaxies with $z>1$ ($z>0.3$) by ${sim}20%$ (${sim}10%$), and the fraction of outliers by ${sim}40%$ (${sim}25%$). For WFIRST, we show how the addition of deep ${YJHK}$ photometry could reduce the standard deviation by ${gtrsim}50%$ at $z>1.5$ and drastically reduce the fraction of outliers to just ${sim}2%$ overall. For CASTOR, we find that the addition of its ${UV}$ and $u$-band photometry could reduce the standard deviation by ${sim}30%$ and the fraction of outliers by ${sim}50%$ for galaxies with $z<0.5$. We also evaluate the photo-$z$ results within sky areas that overlap with both the NIR and UV surveys, and when spectroscopic training sets built from the surveys small-area deep fields are used.
92 - N. Masetti , E. Palazzi , E. Pian 2003
(Abridged) We report on observations of the optical and NIR afterglow of GRB020405. Ground-based optical observations started about 1 day after the GRB and spanned a period of ~10 days; archival HST data extended the coverage up to 70 days after the GRB. We report the first detection of the afterglow in NIR bands. The detection of emission lines in the optical spectrum indicates that the GRB is located at z = 0.691. Absorptions are also detected at z = 0.691 and at z = 0.472. The latter system is likely caused by clouds in a galaxy located 2 arcsec southwest of the GRB host. Hence, for the first time, the galaxy responsible for an intervening absorption system in the spectrum of a GRB afterglow is identified. Optical and NIR photometry indicates that the decay in all bands follows a single power law of index alpha = 1.54. The late-epoch VLT and HST points lie above the extrapolation of this power law, so that a plateau is apparent in the VRIJ light curves at 10-20 days after the GRB. The light curves at epochs later than day ~20 after the GRB are consistent with a power-law decay with index alphaprime = 1.85. We suggest that this deviation can be modeled with a SN having the same temporal profile as SN2002ap, but 1.3 mag brighter at peak, and located at the GRB redshift. Alternatively, a shock re-energization may be responsible for the rebrightening. A polarimetric R-band measurement shows that the afterglow is polarized, with P = 1.5 % and theta = 172 degrees. Optical-NIR spectral flux distributions show a change of slope across the J band which we interpret as due to the presence of nu_c. The analysis of the multiwavelength spectrum within the fireball model suggests that a population of relativistic electrons produces the optical-NIR emission via synchrotron in an adiabatically expanding blastwave, and the X-rays via IC.
In the field of quantum photon sources, single photon emitter from solid is of fundamental importance for quantum computing, quantum communication, and quantum metrology. However, it has been an ultimate but seemingly distant goal to find the single photon sources that stable at room or high temperature, with high-brightness and broad ranges emission wavelength that successively cover ultraviolet to infrared in one host material. Here, we report an ultraviolet to near-infrared broad-spectrum single photon emitters (SPEs) based on a wide band-gap semiconductor material hexagonal boron nitride (hBN). The bright, high purity and stable SPEs with broad-spectrum are observed by using the resonant excitation technique. The single photon sources here can be operated at liquid helium, room temperature and even up to 1100 K. Depending on the excitation laser wavelengths, the SPEs can be dramatically observed from 357 nm to 896 nm. The single photon purity is higher than to 90 percentage and the narrowest linewidth of SPE is down to $sim$75 $mu$eV at low temperature, which reaches the resolution limit of our spectrometer. Our work not only paves a way to engineer a monolithic semiconductor tunable SPS, but also provides fundamental experimental evidence to understand the electronic and crystallographic structure of SPE defect states in hBN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا