ﻻ يوجد ملخص باللغة العربية
Accurate photometric redshift (photo-$z$) estimates are essential to the cosmological science goals of the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST). In this work we use simulated photometry for mock galaxy catalogs to explore how LSST photo-$z$ estimates can be improved by the addition of near-infrared (NIR) and/or ultraviolet (UV) photometry from the Euclid, WFIRST, and/or CASTOR space telescopes. Generally, we find that deeper optical photometry can reduce the standard deviation of the photo-$z$ estimates more than adding NIR or UV filters, but that additional filters are the only way to significantly lower the fraction of galaxies with catastrophically under- or over-estimated photo-$z$. For Euclid, we find that the addition of ${JH}$ $5{sigma}$ photometric detections can reduce the standard deviation for galaxies with $z>1$ ($z>0.3$) by ${sim}20%$ (${sim}10%$), and the fraction of outliers by ${sim}40%$ (${sim}25%$). For WFIRST, we show how the addition of deep ${YJHK}$ photometry could reduce the standard deviation by ${gtrsim}50%$ at $z>1.5$ and drastically reduce the fraction of outliers to just ${sim}2%$ overall. For CASTOR, we find that the addition of its ${UV}$ and $u$-band photometry could reduce the standard deviation by ${sim}30%$ and the fraction of outliers by ${sim}50%$ for galaxies with $z<0.5$. We also evaluate the photo-$z$ results within sky areas that overlap with both the NIR and UV surveys, and when spectroscopic training sets built from the surveys small-area deep fields are used.
We present photometry and derived redshifts from up to eleven bandpasses for 9927 galaxies in the Hubble Ultra Deep field (UDF), covering an observed wavelength range from the near-ultraviolet (NUV) to the near-infrared (NIR) with Hubble Space Telesc
We present deep $J$ and $H$-band images in the extended Great Observatories Origins Deep Survey-North (GOODS-N) field covering an area of 0.22 $rm{deg}^{2}$. The observations were taken using WIRCam on the 3.6-m Canada France Hawaii Telescope (CFHT).
In this paper we present and characterize a nearest-neighbors color-matching photometric redshift estimator that features a direct relationship between the precision and accuracy of the input magnitudes and the output photometric redshifts. This aspe
We report spectroscopic and photometric observations of the Type IIb SN 2011dh obtained between 4 and 34 days after the estimated date of explosion (May 31.5 UT). The data cover a wide wavelength range from 2,000 Angstroms in the UV to 2.4 microns in
Imaging billions of galaxies every few nights during ten years, LSST should be a major contributor to precision cosmology in the 2020 decade. High precision photometric data will be available in six bands, from near-infrared to near-ultraviolet. The