ﻻ يوجد ملخص باللغة العربية
In the field of quantum photon sources, single photon emitter from solid is of fundamental importance for quantum computing, quantum communication, and quantum metrology. However, it has been an ultimate but seemingly distant goal to find the single photon sources that stable at room or high temperature, with high-brightness and broad ranges emission wavelength that successively cover ultraviolet to infrared in one host material. Here, we report an ultraviolet to near-infrared broad-spectrum single photon emitters (SPEs) based on a wide band-gap semiconductor material hexagonal boron nitride (hBN). The bright, high purity and stable SPEs with broad-spectrum are observed by using the resonant excitation technique. The single photon sources here can be operated at liquid helium, room temperature and even up to 1100 K. Depending on the excitation laser wavelengths, the SPEs can be dramatically observed from 357 nm to 896 nm. The single photon purity is higher than to 90 percentage and the narrowest linewidth of SPE is down to $sim$75 $mu$eV at low temperature, which reaches the resolution limit of our spectrometer. Our work not only paves a way to engineer a monolithic semiconductor tunable SPS, but also provides fundamental experimental evidence to understand the electronic and crystallographic structure of SPE defect states in hBN.
Emitters of indistinguishable single photons are crucial for the growing field of quantum technologies. To realize scalability and increase the complexity of quantum optics technologies, multiple independent yet identical single photon emitters are a
We create and isolate single-photon emitters with a high brightness approaching $10^5$ counts per second in commercial silicon-on-insulator (SOI) wafers. The emission occurs in the infrared spectral range with a spectrally narrow zero phonon line in
Quantum technologies require robust and photostable single photon emitters (SPEs) that can be reliably engineered. Hexagonal boron nitride (hBN) has recently emerged as a promising candidate host to bright and optically stable SPEs operating at room
We report the detection of individual emitters in silicon belonging to seven different families of optically-active point defects. These fluorescent centers are created by carbon implantation of a commercial silicon-on-insulator wafer usually employe
Color centers in hexagonal boron nitride have shown enormous promise as single-photon sources, but a clear understanding of electron-phonon interaction dynamics is critical to their development for quantum communications or quantum simulations. We de