ﻻ يوجد ملخص باللغة العربية
[Abridged] We present a molecular survey of the starless cores L1498 and L1517B. These cores have been selected for their relative isolation and close-to-round shape, and they have been observed in a number of lines of 13 molecular species (4 already presented in the first part of this series): CO, CS, N2H+, NH3, CH3OH, SO, C3H2, HC3N, C2S, HCN, H2CO, HCO+, and DCO+. Using a physical model of core structure and a Monte Carlo radiative transfer code, we determine for each core a self-consistent set abundances that fits simultaneously the observed radial profile of integrated intensity and the emergent spectrum towards the core center (for abundant species, optically thin isopologues are used). From this work, we find that L1498 and L1517B have similar abundance patterns, with most species suffering a significant drop toward the core center. This occurs for CO, CS, CH3OH, SO, C3H2, HC3N, C2S, HCN, H2CO, HCO+, and DCO+, which we fit with profiles having a sharp central hole. The size of this hole varies with molecule: DCO+, HCN, and HC3N have the smallest holes while SO, C2S and CO have the largest holes. Only N2H+ and NH3 are present in the gas phase at the core centers. From the different behavior of molecules, we select SO, C2S, and CH3OH as the most sensitive tracers of molecular depletion. Comparing our abundance determinations with the predictions from current chemical models we find order of magnitude discrepancies. Finally, we show how the ``contribution function can be used to study the formation of line profiles from the different regions of a core.
In order to understand the collapse dynamics of observed low-mass starless cores, we revise the conventional stability condition of hydrostatic Bonnor-Ebert spheres to take internal motions into account. Because observed starless cores resemble Bonno
Observations carried out toward starless and pre-stellar cores have revealed that complex organic molecules are prevalent in these objects, but it is unclear what chemical processes are involved in their formation. Recently, it has been shown that co
(Abridged) We present evidence that low-mass starless cores, the simplest units of star formation, are systematically differentiated in their chemical composition. Molecules including CO and CS almost vanish near the core centers, where the abundance
The properties of the first-discovered interstellar object (ISO), 1I/2017 (`Oumuamua), differ from both Solar System asteroids and comets, casting doubt on a protoplanetary disk origin. In this study, we investigate the possibility that it formed wit
We present Spitzer Space Telescope observations of the evolved starless core L1521F which reveal the presence of a very low luminosity object (L < 0.07 Lsun). The object, L1521F-IRS, is directly detected at mid-infrared wavelengths (>5 micron) but on