ترغب بنشر مسار تعليمي؟ اضغط هنا

Assessing the Formation of Solid Hydrogen Objects in Starless Molecular Cloud Cores

80   0   0.0 ( 0 )
 نشر من قبل William Levine
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The properties of the first-discovered interstellar object (ISO), 1I/2017 (`Oumuamua), differ from both Solar System asteroids and comets, casting doubt on a protoplanetary disk origin. In this study, we investigate the possibility that it formed with a substantial H2 ice component in the starless core of a giant molecular cloud. While interstellar solid hydrogen has yet to be detected, this constituent would explain a number of the ISOs properties. We consider the relevant processes required to build decameter-sized, solid hydrogen bodies and assess the plausibility of growth in various size regimes. Via an energy balance argument, we find that the most severe barrier to formation is the extremely low temperature required for the favorability of molecular hydrogen ice. However, if deposition occurs, we find that the turbulence within starless cores is conducive for growth into kilometer-sized bodies on sufficiently short timescales. Then, we analyze mass loss in the interstellar medium and determine the necessary size for a hydrogen object to survive a journey to the Solar System as a function of ISO age. Finally, we discuss the implications if the H2 explanation is correct, and we assess the future prospects of ISO science. If hydrogen ice ISOs do exist, our hypothesized formation pathway would require a small population of porous, 100 micron dust in a starless core region that has cooled to 2.8K via adiabatic expansion of the surrounding gas and excellent shielding from electromagnetic radiation and cosmic rays.



قيم البحث

اقرأ أيضاً

70 - F. Massi 2019
Context The Vela Molecular Ridge is one of the nearest (700 pc) giant molecular cloud (GMC) complexes hosting intermediate-mass (up to early B, late O stars) star formation, and is located in the outer Galaxy, inside the Galactic plane. Vela C is one of the GMCs making up the Vela Molecular Ridge, and exhibits both sub-regions of robust and sub-regions of more quiescent star formation activity, with both low- and intermediate(high)-mass star formation in progress. Aims We aim to study the individual and global properties of dense dust cores in Vela C, and aim to search for spatial variations in these properties which could be related to different environmental properties and/or evolutionary stages in the various sub-regions of Vela C. Methods We mapped the submillimetre (345 GHz) emission from vela C with LABOCA (beam size 19.2, spatial resolution ~0.07 pc at 700 pc) at the APEX telescope. We used the clump-finding algorithm CuTEx to identify the compact submillimetre sources. We also used SIMBA (250 GHz) observations, and Herschel and WISE ancillary data. The association with WISE red sources allowed the protostellar and starless cores to be separated, whereas the Herschel dataset allowed the dust temperature to be derived for a fraction of cores. The protostellar and starless core mass functions (CMFs) were constructed following two different approaches, achieving a mass completeness limit of 3.7 Msun. Results We retrieved 549 submillimetre cores, 316 of which are starless and mostly gravitationally bound (therefore prestellar in nature). Both the protostellar and the starless CMFs are consistent with the shape of a Salpeter initial mass function in the high-mass part of the distribution. Clustering of cores at scales of 1--6 pc is also found, hinting at fractionation of magnetised, turbulent gas.
We demonstrate the formation of gravitationally unstable discs in magnetized molecular cloud cores with initial mass-to-flux ratios of 5 times the critical value, effectively solving the magnetic braking catastrophe. We model the gravitational collap se through to the formation of the stellar core, using Ohmic resistivity, ambipolar diffusion and the Hall effect and using the canonical cosmic ray ionization rate of $zeta_text{cr} = 10^{-17}$ s$^{-1}$. When the magnetic field and rotation axis are initially aligned, a $lesssim1$~au disc forms after the first core phase, whereas when they are anti-aligned, a gravitationally-unstable 25~au disc forms during the first core phase. The aligned model launches a 3~km~s$^{-1}$ first core outflow, while the anti-aligned model launches only a weak $lesssim 0.3$~km~s$^{-1}$ first core outflow. Qualitatively, we find that models with $zeta_text{cr} = 10^{-17}$ s$^{-1}$ are similar to purely hydrodynamical models if the rotation axis and magnetic field are initially anti-aligned, whereas they are qualitatively similar to ideal magnetohydrodynamical models if initially aligned.
234 - L. F. Rodriguez , L.Zapata 2013
G0.253+0.016 is a remarkable massive infrared dark cloud located within $sim$100 pc of the galactic center. With a high mass of $1.3 times 10^5 M_odot$, a compact average radius of $sim$2.8 pc and a low dust temperature of 23 K, it has been believed to be a yet starless precursor to a massive Arches-like stellar cluster. We present sensitive JVLA 1.3 and 5.6 cm radio continuum observations that reveal the presence on three compact thermal radio sources projected against this cloud. These radio sources are interpreted as HII regions powered by $sim$B0.5 ZAMS stars. We conclude that although G0.253+0.016 does not show evidence of O-type star formation, there are certainly early B-type stars embedded in it. We detect three more sources in the periphery of G0.253+0.016 with non-thermal spectral indices. We suggest that these sources may be related to the galactic center region and deserve further study.
228 - M. Tafalla 2001
(Abridged) We present evidence that low-mass starless cores, the simplest units of star formation, are systematically differentiated in their chemical composition. Molecules including CO and CS almost vanish near the core centers, where the abundance decreases by one or two orders of magnitude. At the same time, N2H+ has a constant abundance, and the fraction of NH3 increases toward the core center. Our conclusions are based on a study of 5 mostly-round starless cores (L1498, L1495, L1400K, L1517B, and L1544), which we have mappedin C18O(1-0), C17O(1-0), CS(2-1), C34S(2-1), N2H+(1-0), NH3(1,1) and (2,2), and the 1.2 mm continuum. For each core we have built a model that fits simultaneously the radial profile of all observed emission and the central spectrum for the molecular lines. The observed abundance drops of CO and CS are naturally explained by the depletion of these molecules onto dust grains at densities of 2-6 10^4 cm-3. N2H+ seems unaffected by this process up to densities of several 10^5, while the NH3 abundance may be enhanced by reactions triggered by the disappearance of CO from the gas phase. With the help of our models, we show that chemical differentiation automatically explains the discrepancy between the sizes of CS and NH3 maps, a problem which has remained unexplained for more than a decade. Our models, in addition, show that a combination of radiative transfer effects can give rise to the previously observed discrepancy in the linewidth of these two tracers. Although this discrepancy has been traditionally interpreted as resulting from a systematic increase of the turbulent linewidth with radius, our models show that it can arise in conditions of constant gas turbulence.
We investigate the formation of circumstellar disks and outflows subsequent to the collapse of molecular cloud cores with the magnetic field and turbulence. Numerical simulations are performed by using an adaptive mesh refinement to follow the evolut ion up to $sim 1000$~yr after the formation of a protostar. In the simulations, circumstellar disks are formed around the protostars; those in magnetized models are considerably smaller than those in nonmagnetized models, but their size increases with time. The models with stronger magnetic field tends to produce smaller disks. During evolution in the magnetized models, the mass ratios of a disk to a protostar is approximately constant at $sim 1-10$%. The circumstellar disks are aligned according to their angular momentum, and the outflows accelerate along the magnetic field on the $10-100$~au scale; this produces a disk that is misaligned with the outflow. The outflows are classified into two types: a magneto-centrifugal wind and a spiral flow. In the latter, because of the geometry, the axis of rotation is misaligned with the magnetic field. The magnetic field has an internal structure in the cloud cores, which also causes misalignment between the outflows and the magnetic field on the scale of the cloud core. The distribution of the angular momentum vectors in a core also has a non-monotonic internal structure. This should create a time-dependent accretion of angular momenta onto the circumstellar disk. Therefore, the circumstellar disks are expected to change their orientation as well as their sizes in the long-term evolutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا