ترغب بنشر مسار تعليمي؟ اضغط هنا

The complex organic molecular content in the L1498 starless core

126   0   0.0 ( 0 )
 نشر من قبل Izaskun Jimenez-Serra
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations carried out toward starless and pre-stellar cores have revealed that complex organic molecules are prevalent in these objects, but it is unclear what chemical processes are involved in their formation. Recently, it has been shown that complex organics are preferentially produced at an intermediate-density shell within the L1544 pre-stellar core at radial distances of ~4000 au with respect to the core center. However, the spatial distribution of complex organics has only been inferred toward this core and it remains unknown whether these species present a similar behaviour in other cores. We report high-sensitivity observations carried out toward two positions in the L1498 pre-stellar core, the dust peak and a position located at a distance of ~11000 au from the center of the core where the emission of CH$_3$OH peaks. Similarly to L1544, our observations reveal that small O-bearing molecules and N-bearing species are enhanced by factors ~4-14 toward the outer shell of L1498. However, unlike L1544, large O-bearing organics such as CH3CHO, CH3OCH3 or CH3OCHO are not detected within our sensitivity limits. For N-bearing organics, these species are more abundant toward the outer shell of the L1498 pre-stellar core than toward the one in L1544. We propose that the differences observed between O-bearing and N-bearing species in L1498 and L1544 are due to the different physical structure of these cores, which in turn is a consequence of their evolutionary stage, with L1498 being younger than L1544.

قيم البحث

اقرأ أيضاً

The detection of complex organic molecules (COMs) toward cold sources such as pre-stellar cores (with T<10 K), has challenged our understanding of the formation processes of COMs in the interstellar medium. Recent modelling on COM chemistry at low te mperatures has provided new insight into these processes predicting that COM formation depends strongly on parameters such as visual extinction and the level of CO freeze out. We report deep observations of COMs toward two positions in the L1544 pre-stellar core: the dense, highly-extinguished continuum peak with Av>=30 mag within the inner 2700 au; and a low-density shell with average Av~7.5-8 mag located at 4000 au from the cores center and bright in CH3OH. Our observations show that CH3O, CH3OCH3 and CH3CHO are more abundant (by factors ~2-10) toward the low-density shell than toward the continuum peak. Other COMs such as CH3OCHO, c-C3H2O, HCCCHO, CH2CHCN and HCCNC show slight enhancements (by factors <=3) but the associated uncertainties are large. This suggests that COMs are actively formed and already present in the low-density shells of pre-stellar cores. The modelling of the chemistry of O-bearing COMs in L1544 indicates that these species are enhanced in this shell because i) CO starts freezing out onto dust grains driving an active surface chemistry; ii) the visual extinction is sufficiently high to prevent the UV photo-dissociation of COMs by the external interstellar radiation field; and iii) the density is still moderate to prevent severe depletion of COMs onto grains.
We present observations of linear polarization from dust thermal emission at 850 $mu m$ towards the starless cloud L183. These data were obtained at the James Clerk Maxwell Telescope (JCMT) using the Submillimetre Common-User Bolometer Array 2 (SCUBA -2) camera in conjunction with its polarimeter POL-2. Polarized dust emission traces the plane-of-sky magnetic field structure in the cloud, thus allowing us to investigate the role of magnetic fields in the formation and evolution of its starless core. To interpret these measurements, we first calculate the dust temperature and column density in L183 by fitting the spectral energy distribution obtained by combining data from the JCMT and the $textit{Herschel}$ space observatory. We used the Davis-Chandrasekhar-Fermi technique to measure the magnetic field strength in five sub-regions of the cloud, and we find values ranging from $sim120pm18~mu G$ to $sim270pm64~mu G$ in agreement with previous studies. Combined with an average hydrogen column density ($N_{text{H}_2}$) of $sim 1.5 times 10^{22} $cm$^{-2}$ in the cloud, we also find that all five sub-regions are magnetically subcritical. These results indicate that the magnetic field in L183 is sufficiently strong to oppose the gravitational collapse of the cloud.
Since the start of ALMA observatory operation, new and important chemistry of infrared cold core was revealed. Molecular transitions at millimeter range are being used to identify and to characterize these sources. We have investigated the 231 GHz AL MA archive observations of the infrared dark cloud region C9, focusing on the brighter source that we called as IRDC-C9 Main. We report the existence of two sub-structures on the continuum map of this source: a compact bright spot with high chemistry diversity that we labelled as core, and a weaker and extended one, that we labelled as tail. In the core, we have identified lines of the molecules OCS(19-18), $^{13}$CS(5-4) and CH$_{3}$CH$_{2}$CN, several lines of CH$_{3}$CHO and the k-ladder emission of $^{13}$CH$_{3}$CN.We report two different temperature regions: while the rotation diagram of CH$_{3}$CHO indicates a temperature of 25 K, the rotation diagram of $^{13}$CH$_{3}$CN indicates a warmer phase at temperature of $sim450$K. In the tail, only the OCS(19-18) and $^{13}$CS(5-4) lines were detected. We used the $Nautilus$ and the textsc{Radex} codes to estimate the column densities and the abundances. The existence of hot gas in the core of IRDC-C9 Main suggests the presence of a protostar, which is not present in the tail.
Compact substructure is expected to arise in a starless core as mass becomes concentrated in the central region likely to form a protostar. Additionally, multiple peaks may form if fragmentation occurs. We present ALMA Cycle 2 observations of 60 star less and protostellar cores in the Ophiuchus molecular cloud. We detect eight compact substructures which are >15 arcsec from the nearest Spitzer YSO. Only one of these has strong evidence for being truly starless after considering ancillary data, e.g., from Herschel and X-ray telescopes. An additional extended emission structure has tentative evidence for starlessness. The number of our detections is consistent with estimates from a combination of synthetic observations of numerical simulations and analytical arguments. This result suggests that a similar ALMA study in the Chamaeleon I cloud, which detected no compact substructure in starless cores, may be due to the peculiar evolutionary state of cores in that cloud.
(abridged) Methods: We derive maps of submillimeter dust optical depth and effective dust temperature from Herschel data that were calibrated against Planck. After calibration, we then fit a modified blackbody to the long-wavelength Herschel data, us ing the Planck-derived dust opacity spectral index beta, derived on scales of 30 (or ~1 pc). We use this model to make predictions of the submillimeter flux density at 850 micron, and we compare these in turn with APEX-Laboca observations. Results: A comparison of the submillimeter dust optical depth and near-infrared extinction data reveals evidence for an increased submillimeter dust opacity at high column densities, interpreted as an indication of grain growth in the inner parts of the core. Additionally, a comparison of the Herschel dust model and the Laboca data reveals that the frequency dependence of the submillimeter opacity, described by the spectral index beta, does not change. A single beta that is only slightly different from the Planck-derived value is sufficient to describe the data, beta=1.53+/-0.07. We apply a similar analysis to Barnard 68, a core with significantly lower column densities than FeSt 1-457, and we do not find evidence for grain growth but also a single beta. Conclusions: While we find evidence for grain growth from the dust opacity in FeSt 1-457, we find no evidence for significant variations in the dust opacity spectral index beta on scales 0.02<x<1 pc (or 36<x<30). The correction to the Planck-derived dust beta that we find in both cases is on the order of the measurement error, not including any systematic errors, and it would thus be reasonable to directly apply the dust beta from the Planck all-sky dust model. As a corollary, reliable effective temperature maps can be derived which would be otherwise affected by beta variations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا