ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio-loud Narrow-Line Type 1 Quasars

95   0   0.0 ( 0 )
 نشر من قبل Stefanie Komossa
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first systematic study of (non-radio-selected) radio-loud narrow-line Seyfert 1 (NLS1) galaxies. Cross-correlation of the `Catalogue of Quasars and Active Nuclei with several radio and optical catalogues led to the identification of 11 radio-loud NLS1 candidates including 4 previously known ones. Most of the radio-loud NLS1s are compact, steep spectrum sources accreting close to, or above, the Eddington limit. The radio-loud NLS1s of our sample are remarkable in that they occupy a previously rarely populated regime in NLS1 multi-wavelength parameter space. While their [OIII]/H_beta and FeII/H_beta intensity ratios almost cover the whole range observed in NLS1 galaxies, their radio properties extend the range of radio-loud objects to those with small widths of the broad Balmer lines. Among the radio-detected NLS1 galaxies, the radio index R distributes quite smoothly up to the critical value of R ~ 10 and covers about 4 orders of magnitude in total. Statistics show that ~7% of the NLS1 galaxies are formally radio-loud while only 2.5% exceed a radio index R > 100. Several mechanisms are considered as explanations for the radio loudness of the NLS1 galaxies and for the lower frequency of radio-louds among NLS1s than quasars. While properties of most sources (with 2-3 exceptions) generally do not favor relativistic beaming, the combination of accretion mode and spin may explain the observations. (abbreviated)

قيم البحث

اقرأ أيضاً

81 - K. E. Gabanyi , A. Moor , S. Frey 2018
Most of the radio-loud narrow-line Seyfert 1 (NLS1) galaxies resemble compact steep-spectrum sources. However, the extremely radio-loud ones show blazar-like characteristics, like flat radio spectra, compact radio cores, substantial variability and h igh brightness temperatures. These objects are thought to be similar to blazars as they possess relativistic jets seen at small angle to the line of sight. This claim has been further supported by the Fermi satellite discovery of gamma-ray emission from a handful of these sources. Using the Wide-Field Infrared Survey Explorer (WISE) data, we analyzed the mid-infrared variability characteristics of $42$ radio-loud NLS1 at $3.4$ and $4.6,mu$m. We found that $27$ out of the studied $42$ sources showed variability in at least one of the two infrared bands. In some cases, significant changes in the infrared colors can alter the location of the source in the WISE color-color diagram which might lead to different classification. More than $60$% of the variable sources also showed variability within a $1-1.5$ day interval. Such short time scales argue for a compact emission region like those associated with the jets. This connection is further strengthened by the fact that the brightest $gamma$-ray emitters of the sample ($6$ sources), all showed short time scale infrared variability.
The recent detection of gamma-ray emission from four radio-loud narrow-line Seyfert 1 galaxies suggests that the engine driving the AGN activity of these objects share some similarities with that of blazars, namely the presence of a gamma-ray emittin g, variable, jet of plasma closely aligned to the line of sight. In this work we analyze the gamma-ray light curves of the four radio-loud narrow-line Seyfert 1 galaxies for which high-energy gamma-ray emission has been discovered by Fermi/LAT, in order to study their variability. We find significant flux variability in all the sources. This allows us to exclude a starburst origin of the gamma-ray photons and confirms the presence of a relativistic jet. Furthermore we estimate the minimum e-folding variability timescale (3 - 30 days) and infer an upper limit for the size of the emitting region (0.2 - 2 pc, assuming a relativistic Doppler factor delta=10 and a jet aperture of theta=0.1 rad).
We performed phase-reference very long baseline interferometry (VLBI) observations on five radio-loud narrow-line Seyfert 1 galaxies (NLS1s) at 8.4 GHz with the Japanese VLBI Network (JVN). Each of the five targets (RXS J08066+7248, RXS J16290+4007, RXS J16333+4718, RXS J16446+2619, and B3 1702+457) in milli-Jansky levels were detected and unresolved in milli-arcsecond resolutions, i.e., with brightness temperatures higher than 10^7 K. The nonthermal processes of active galactic nuclei (AGN) activity, rather than starbursts, are predominantly responsible for the radio emissions from these NLS1s. Out of the nine known radio-loud NLS1s, including the ones chosen for this study, we found that the four most radio-loud objects exclusively have inverted spectra. This suggests a possibility that these NLS1s are radio-loud due to Doppler beaming, which can apparently enhance both the radio power and the spectral frequency.
We have discovered kiloparsec-scale extended radio emission in three narrow-line Seyfert 1 galaxies (NLS1s) in sub-arcsecond resolution 9 GHz images from the Karl G. Jansky Very Large Array (VLA). We find all sources show two-sided, mildly core-domin ated jet structures with diffuse lobes dominated by termination hotspots. These span 20-70 kpc with morphologies reminiscent of FR II radio galaxies, while the extended radio luminosities are intermediate between FR I and FR II sources. In two cases the structure is linear, while a $45^{circ}$ bend is apparent in the third. Very Long Baseline Array images at 7.6 GHz reveal parsec-scale jet structures, in two cases with extended structure aligned with the inner regions of the kiloparsec-scale jets. Based on this alignment, the ratio of the radio core luminosity to the optical luminosity, the jet/counter-jet intensity and extension length ratios, and moderate core brightness temperatures ($lesssim10^{10}$ K), we conclude these jets are mildly relativistic ($betalesssim0.3$, $deltasim1$-$1.5$) and aligned at moderately small angles to the line of sight (10-15$^{circ}$). The derived kinematic ages of $sim10^6$-$10^7$ y are much younger than radio galaxies but comparable to other NLS1s. Our results increase the number of radio-loud NLS1s with known kiloparsec-scale extensions from seven to ten and suggest that such extended emission may be common, at least among the brightest of these sources.
We report identification of the radio loud narrow-line quasar SDSS J172206.03+565451.6 which we found in the course of a search for radio loud narrow-line Active Galactic Nuclei (AGN). SDSSJ172206.03+565451.6 is only the ~4th securely identified radi o loud narrow-line quasar and the second-most radio loudest with a radio index R_1.4 ~ 100-700. Its black hole mass, M_BH = (2-3) 10^7 M_sun, is unusually small given its radio loudness, and the combination of mass and radio index puts SDSSJ172206.03+565451.6 in a scarcely populated region of M_BH-R diagrams. SDSSJ172206.03+565451.6 is a classical Narrow-Line Seyfert1-type object with FWHM_Hbeta = 1490 km/s, an intensity ratio of [OIII]/Hbeta = 0.7 and FeII emission complexes with FeII4570/Hbeta = 0.7. The ionization parameter of its narrow-line region, estimated from the line ratio [OII]/[OIII], is similar to Seyferts and its high ratio of [NeV]/[NeIII] indicates a strong EUV to soft-X-ray excess. We advertise the combined usage of [OII]/[OIII] and [NeV]/[NeIII] diagrams as a useful diagnostic tool to estimate ionization parameters and to constrain the EUV continuum shape relatively independent from other parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا