ترغب بنشر مسار تعليمي؟ اضغط هنا

The radio loud narrow-line quasar SDSSJ172206.03+565451.6

97   0   0.0 ( 0 )
 نشر من قبل Stefanie Komossa
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report identification of the radio loud narrow-line quasar SDSS J172206.03+565451.6 which we found in the course of a search for radio loud narrow-line Active Galactic Nuclei (AGN). SDSSJ172206.03+565451.6 is only the ~4th securely identified radio loud narrow-line quasar and the second-most radio loudest with a radio index R_1.4 ~ 100-700. Its black hole mass, M_BH = (2-3) 10^7 M_sun, is unusually small given its radio loudness, and the combination of mass and radio index puts SDSSJ172206.03+565451.6 in a scarcely populated region of M_BH-R diagrams. SDSSJ172206.03+565451.6 is a classical Narrow-Line Seyfert1-type object with FWHM_Hbeta = 1490 km/s, an intensity ratio of [OIII]/Hbeta = 0.7 and FeII emission complexes with FeII4570/Hbeta = 0.7. The ionization parameter of its narrow-line region, estimated from the line ratio [OII]/[OIII], is similar to Seyferts and its high ratio of [NeV]/[NeIII] indicates a strong EUV to soft-X-ray excess. We advertise the combined usage of [OII]/[OIII] and [NeV]/[NeIII] diagrams as a useful diagnostic tool to estimate ionization parameters and to constrain the EUV continuum shape relatively independent from other parameters.



قيم البحث

اقرأ أيضاً

We observed the narrow-line quasar SDSS J094857.3+002225, which has the highest known radio loudness for a narrow-line Seyfert~1 galaxy (NLS1), at 1.7--15.4 GHz with the Very Long Baseline Array (VLBA). This is the first very-long-baseline interferom etry (VLBI) investigation for a radio-loud NLS1. We independently found very high brightness temperatures from (1) its compactness in a VLBA image and (2) flux variation among the VLBA observation, our other observations with the VLBA, and the Very Large Array (VLA). A Doppler factor larger than 2.7--5.5 was required to meet an intrinsic limit of brightness temperature in the rest frame. This is evidence for highly relativistic nonthermal jets in an NLS1. We suggest that the Doppler factor is one of the most crucial parameters determining the radio loudness of NLS1s. The accretion disk of SDSS J094857.3+002225 is probably in the very high state, rather than the high/soft state, by analogy with X-ray binaries with strong radio outbursts and superluminal jets such as GRS 1915+105.
94 - S. Komossa , W. Voges , D. Xu 2006
We present the first systematic study of (non-radio-selected) radio-loud narrow-line Seyfert 1 (NLS1) galaxies. Cross-correlation of the `Catalogue of Quasars and Active Nuclei with several radio and optical catalogues led to the identification of 11 radio-loud NLS1 candidates including 4 previously known ones. Most of the radio-loud NLS1s are compact, steep spectrum sources accreting close to, or above, the Eddington limit. The radio-loud NLS1s of our sample are remarkable in that they occupy a previously rarely populated regime in NLS1 multi-wavelength parameter space. While their [OIII]/H_beta and FeII/H_beta intensity ratios almost cover the whole range observed in NLS1 galaxies, their radio properties extend the range of radio-loud objects to those with small widths of the broad Balmer lines. Among the radio-detected NLS1 galaxies, the radio index R distributes quite smoothly up to the critical value of R ~ 10 and covers about 4 orders of magnitude in total. Statistics show that ~7% of the NLS1 galaxies are formally radio-loud while only 2.5% exceed a radio index R > 100. Several mechanisms are considered as explanations for the radio loudness of the NLS1 galaxies and for the lower frequency of radio-louds among NLS1s than quasars. While properties of most sources (with 2-3 exceptions) generally do not favor relativistic beaming, the combination of accretion mode and spin may explain the observations. (abbreviated)
121 - M. Orienti 2015
We report results on multiband observations from radio to gamma-rays of the two radio-loud narrow-line Seyfert 1 (NLSy1) galaxies PKS 2004-447 and J1548+3511. Both sources show a core-jet structure on parsec scale, while they are unresolved at the ar csecond scale. The high core dominance and the high variability brightness temperature make these NLSy1 galaxies good gamma-ray source candidates. Fermi-LAT detected gamma-ray emission only from PKS 2004-447, with a gamma-ray luminosity comparable to that observed in blazars. No gamma-ray emission is observed for J1548+3511. Both sources are variable in X-rays. J1548+3511 shows a hardening of the spectrum during high activity states, while PKS 2004-447 has no spectral variability. A spectral steepening likely related to the soft excess is hinted below 2 keV for J1548+3511, while the X-ray spectra of PKS 2004-447 collected by XMM-Newton in 2012 are described by a single power-law without significant soft excess. No additional absorption above the Galactic column density or the presence of an Fe line is detected in the X-ray spectra of both sources.
81 - K. E. Gabanyi , A. Moor , S. Frey 2018
Most of the radio-loud narrow-line Seyfert 1 (NLS1) galaxies resemble compact steep-spectrum sources. However, the extremely radio-loud ones show blazar-like characteristics, like flat radio spectra, compact radio cores, substantial variability and h igh brightness temperatures. These objects are thought to be similar to blazars as they possess relativistic jets seen at small angle to the line of sight. This claim has been further supported by the Fermi satellite discovery of gamma-ray emission from a handful of these sources. Using the Wide-Field Infrared Survey Explorer (WISE) data, we analyzed the mid-infrared variability characteristics of $42$ radio-loud NLS1 at $3.4$ and $4.6,mu$m. We found that $27$ out of the studied $42$ sources showed variability in at least one of the two infrared bands. In some cases, significant changes in the infrared colors can alter the location of the source in the WISE color-color diagram which might lead to different classification. More than $60$% of the variable sources also showed variability within a $1-1.5$ day interval. Such short time scales argue for a compact emission region like those associated with the jets. This connection is further strengthened by the fact that the brightest $gamma$-ray emitters of the sample ($6$ sources), all showed short time scale infrared variability.
The recent detection of gamma-ray emission from four radio-loud narrow-line Seyfert 1 galaxies suggests that the engine driving the AGN activity of these objects share some similarities with that of blazars, namely the presence of a gamma-ray emittin g, variable, jet of plasma closely aligned to the line of sight. In this work we analyze the gamma-ray light curves of the four radio-loud narrow-line Seyfert 1 galaxies for which high-energy gamma-ray emission has been discovered by Fermi/LAT, in order to study their variability. We find significant flux variability in all the sources. This allows us to exclude a starburst origin of the gamma-ray photons and confirms the presence of a relativistic jet. Furthermore we estimate the minimum e-folding variability timescale (3 - 30 days) and infer an upper limit for the size of the emitting region (0.2 - 2 pc, assuming a relativistic Doppler factor delta=10 and a jet aperture of theta=0.1 rad).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا