ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared variability of radio-loud narrow-line Seyfert 1 galaxies

82   0   0.0 ( 0 )
 نشر من قبل Krisztina Eva Gabanyi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Most of the radio-loud narrow-line Seyfert 1 (NLS1) galaxies resemble compact steep-spectrum sources. However, the extremely radio-loud ones show blazar-like characteristics, like flat radio spectra, compact radio cores, substantial variability and high brightness temperatures. These objects are thought to be similar to blazars as they possess relativistic jets seen at small angle to the line of sight. This claim has been further supported by the Fermi satellite discovery of gamma-ray emission from a handful of these sources. Using the Wide-Field Infrared Survey Explorer (WISE) data, we analyzed the mid-infrared variability characteristics of $42$ radio-loud NLS1 at $3.4$ and $4.6,mu$m. We found that $27$ out of the studied $42$ sources showed variability in at least one of the two infrared bands. In some cases, significant changes in the infrared colors can alter the location of the source in the WISE color-color diagram which might lead to different classification. More than $60$% of the variable sources also showed variability within a $1-1.5$ day interval. Such short time scales argue for a compact emission region like those associated with the jets. This connection is further strengthened by the fact that the brightest $gamma$-ray emitters of the sample ($6$ sources), all showed short time scale infrared variability.


قيم البحث

اقرأ أيضاً

We have discovered kiloparsec-scale extended radio emission in three narrow-line Seyfert 1 galaxies (NLS1s) in sub-arcsecond resolution 9 GHz images from the Karl G. Jansky Very Large Array (VLA). We find all sources show two-sided, mildly core-domin ated jet structures with diffuse lobes dominated by termination hotspots. These span 20-70 kpc with morphologies reminiscent of FR II radio galaxies, while the extended radio luminosities are intermediate between FR I and FR II sources. In two cases the structure is linear, while a $45^{circ}$ bend is apparent in the third. Very Long Baseline Array images at 7.6 GHz reveal parsec-scale jet structures, in two cases with extended structure aligned with the inner regions of the kiloparsec-scale jets. Based on this alignment, the ratio of the radio core luminosity to the optical luminosity, the jet/counter-jet intensity and extension length ratios, and moderate core brightness temperatures ($lesssim10^{10}$ K), we conclude these jets are mildly relativistic ($betalesssim0.3$, $deltasim1$-$1.5$) and aligned at moderately small angles to the line of sight (10-15$^{circ}$). The derived kinematic ages of $sim10^6$-$10^7$ y are much younger than radio galaxies but comparable to other NLS1s. Our results increase the number of radio-loud NLS1s with known kiloparsec-scale extensions from seven to ten and suggest that such extended emission may be common, at least among the brightest of these sources.
The recent detection of gamma-ray emission from four radio-loud narrow-line Seyfert 1 galaxies suggests that the engine driving the AGN activity of these objects share some similarities with that of blazars, namely the presence of a gamma-ray emittin g, variable, jet of plasma closely aligned to the line of sight. In this work we analyze the gamma-ray light curves of the four radio-loud narrow-line Seyfert 1 galaxies for which high-energy gamma-ray emission has been discovered by Fermi/LAT, in order to study their variability. We find significant flux variability in all the sources. This allows us to exclude a starburst origin of the gamma-ray photons and confirms the presence of a relativistic jet. Furthermore we estimate the minimum e-folding variability timescale (3 - 30 days) and infer an upper limit for the size of the emitting region (0.2 - 2 pc, assuming a relativistic Doppler factor delta=10 and a jet aperture of theta=0.1 rad).
Narrow line Seyfert 1 galaxies (NLSy1s) constitute the AGN subclass associated with systematically smaller black hole masses. A few radio loud ones have been detected in MeV -- GeV energy bands by Fermi and evidence for the presence of blazar-like je ts has been accumulated. In this study we wish to quantify the temporal behaviour of the optical polarisation, fraction and angle, for a selected sample of radio loud NLSy1s. We also search for rotations of the polarisation plane similar to those commonly observed in blazars. We have conducted R-band optical polarisation monitoring of a sample of 10 RL NLSy1s 5 of which have been previously detected by Fermi. The dataset includes observations with the RoboPol, KANATA, Perkins and Steward polarimeters. In the cases where evidences for long rotations of the polarisation plane are found, we carry out numerical simulations to assess the probability that they are caused by intrinsically evolving EVPAs instead of observational noise. Even our moderately sampled sources show indications of variability, both in polarisation fraction and angle. For the four best sampled objects in our sample we find multiple periods of significant polarisation angle variability. In the two best sampled cases, namely J1505+0326 and J0324+3410, we find indications for three long rotations. We show that although noise can induce the observed behaviour, it is much more likely that the apparent rotation is caused by intrinsic evolution of the EVPA. To our knowledge this is the very first detection of such events in this class of sources. In the case of the largest dataset (J0324+3410) we find that the EVPA concentrates around a direction which is at 49.3degr to the 15-GHz radio jet implying a projected magnetic field at an angle of 40.7degr to that axis.
We present the color and flux variability analysis at 3.4 {mu}m (W1-band) and 4.6 {mu}m (W 2-band) of 492 narrow-line Seyfert 1 (NLSy1) galaxies using archival data from the Wide-field Infrared Survey Explorer (WISE). In the WISE color-color, (W1 - W 2) versus (W2 - W3) diagram, ~58% of the NLSy1 galaxies of our sample lie in the region occupied by the blazar category of active galactic nuclei (AGN). The mean W1 - W2 color of candidate variable NLSy1 galaxies is $0.99 pm 0.18$ mag. The average amplitude of variability is $0.11 pm 0.07$ mag in long-term (multi-year) with no difference in variability between W1 and W2-bands. The W1 - W2 color of NLSy1 galaxies is anti-correlated with the relative strength of [O III] to H{beta}, strongly correlated with continuum luminosity, black hole mass, and Eddington ratio. The long-term amplitude of variability shows weak anti-correlation with the Fe II strength, continuum luminosity and Eddington ratio. A positive correlation between color as well as the amplitude of variability with the radio power at 1.4 GHz was found for the radio-detected NLSy1 galaxies. This suggests non-thermal synchrotron contribution to the mid-infrared color and flux variability in radio-detected NLSy1 galaxies.
109 - J. L. Richards 2014
Several narrow-line Seyfert 1 galaxies (NLS1s) have now been detected in gamma rays, providing firm evidence that at least some of this class of active galactic nuclei (AGN) produce relativistic jets. The presence of jets in NLS1s is surprising, as t hese sources are typified by comparatively small black hole masses and near- or super-Eddington accretion rates. This challenges the current understanding of the conditions necessary for jet production. Comparing the properties of the jets in NLS1s with those in more familiar jetted systems is thus essential to improve jet production models. We present early results from our campaign to monitor the kinematics and polarization of the parsec-scale jets in a sample of 15 NLS1s through multifrequency observations with the Very Long Baseline Array. These observations are complemented by fast-cadence 15 GHz monitoring with the Owens Valley Radio Observatory 40m telescope and optical spectroscopic monitoring with with the 2m class telescope at the Guillermo Haro Astrophysics Observatory in Cananea, Mexico.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا