ﻻ يوجد ملخص باللغة العربية
We estimate the star-formation rates and the stellar masses of the Extremely Red objects (EROs) detected in a 180arcmin2 Ks-band survey (Ks~20mag). This sample is complemented by sensitive 1.4GHz radio observations (12micro-Jy; 1sigma rms) and multiwaveband photometric data (UBVRIJ) as part of the Phoenix Deep Survey. For bright K<19.5mag EROs in this sample (I-K>4mag; total of 177) we use photometric methods to discriminate dust-enshrouded active systems from early-type galaxies and to constrain their redshifts. Radio stacking is then employed to estimate mean radio flux densities of 8.6 (3sigma) and 6.4micro-Jy (2.4sigma) for the dusty and early-type subsamples respectively. Assuming that dust enshrouded active EROs are powered by star-formation the above radio flux density at the median redshift of z=1 translates to a radio luminosity of 4.5e22W/Hz and a star-formation rate of SFR=25Mo/yr. Combining this result with photometric redshift estimates we find a lower limit to the star-formation rate density of ~0.02Mo/yr/Mpc^3 for the K<19.5mag dusty EROs in the range z=0.85-1.35. Comparison with the SFR density estimated from previous ERO samples (with similar selection criteria) using optical emission lines, suffering dust attenuation, suggests a mean dust reddening of at least E(B-V)~0.5 for this population. We further use the Ks-band luminosity as proxy to stellar mass and argue that the dust enshrouded EROs in our sample are massive systems, M>5e10Mo. We also find that EROs represent a sizable fraction (~50%) of the number density of galaxies more massive than M=5e10Mo at z~1, with almost equal contributions from dusty and early types. Similarly, we find that EROs contribute about half of the mass density of the Universe at z~1 after taking into account incompleteness because of the limit K=19.5mag.
Insensitive to dust obscuration, radio wavelengths are ideal to study star-forming galaxies free of dust induced biases. Using data from the Phoenix Deep Survey, we have identified a sample of star-forming extremely red objects (EROs). Stacking of th
To understand cosmic mass assembly in the Universe at early epochs, we primarily rely on measurements of stellar mass and star formation rate of distant galaxies. In this paper, we present stellar masses and star formation rates of six high-redshift
Establishing the stellar masses (M*), and hence specific star-formation rates (sSFRs) of submillimetre galaxies (SMGs) is crucial for determining their role in the cosmic galaxy/star formation. However, there is as yet no consensus over the typical M
Star-formation activity is a key property to probe the structure formation and hence characterise the large-scale structures of the universe. This information can be deduced from the star formation rate (SFR) and the stellar mass (Mstar), both of whi
We investigate the evolution of galaxy masses and star formation rates in the Evolution and Assembly of Galaxies and their Environment (EAGLE) simulations. These comprise a suite of hydrodynamical simulations in a $Lambda$CDM cosmogony with subgrid m