ﻻ يوجد ملخص باللغة العربية
Star-formation activity is a key property to probe the structure formation and hence characterise the large-scale structures of the universe. This information can be deduced from the star formation rate (SFR) and the stellar mass (Mstar), both of which, but especially the SFR, are very complex to estimate. Determining these quantities from UV, optical, or IR luminosities relies on complex modeling and on priors on galaxy types. We propose a method based on the machine-learning algorithm Random Forest to estimate the SFR and the Mstar of galaxies at redshifts in the range 0.01<z<0.3, independent of their type. The machine-learning algorithm takes as inputs the redshift, WISE luminosities, and WISE colours in near-IR, and is trained on spectra-extracted SFR and Mstar from the SDSS MPA-JHU DR8 catalogue as outputs. We show that our algorithm can accurately estimate SFR and Mstar with scatters of sigma_SFR=0.38 dex and sigma_Mstar=0.16 dex for SFR and stellar mass, respectively, and that it is unbiased with respect to redshift or galaxy type. The full-sky coverage of the WISE satellite allows us to characterise the star-formation activity of all galaxies outside the Galactic mask with spectroscopic redshifts in the range 0.01<z<0.3. The method can also be applied to photometric-redshift catalogues, with best scatters of sigma_SFR=0.42 dex and sigma_Mstar=0.24 dex obtained in the redshift range 0.1<z<0.3.
We have updated the Munich galaxy formation model to the Planck first-year cosmology, while modifying the treatment of baryonic processes to reproduce recent data on the abundance and passive fractions of galaxies from z= 3 down to z=0. Matching thes
To understand cosmic mass assembly in the Universe at early epochs, we primarily rely on measurements of stellar mass and star formation rate of distant galaxies. In this paper, we present stellar masses and star formation rates of six high-redshift
We investigate the evolution of galaxy masses and star formation rates in the Evolution and Assembly of Galaxies and their Environment (EAGLE) simulations. These comprise a suite of hydrodynamical simulations in a $Lambda$CDM cosmogony with subgrid m
Global Stellar Formation Rates or SFRs are crucial to constrain theories of galaxy formation and evolution. SFRs are usually estimated via spectroscopic observations which require too much previous telescope time and therefore cannot match the needs
A significant fraction of high redshift star-forming disc galaxies are known to host giant clumps, whose nature and role in galaxy evolution are yet to be understood. In this work we first present a new method based on neural networks to detect clump