ترغب بنشر مسار تعليمي؟ اضغط هنا

The stellar masses and specific star-formation rates of submillimetre galaxies

120   0   0.0 ( 0 )
 نشر من قبل Micha{\\l} Jerzy Micha{\\l}owski
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Establishing the stellar masses (M*), and hence specific star-formation rates (sSFRs) of submillimetre galaxies (SMGs) is crucial for determining their role in the cosmic galaxy/star formation. However, there is as yet no consensus over the typical M* of SMGs. Specifically, even for the same set of SMGs, the reported average M* have ranged over an order of magnitude, from ~5x10^10 Mo to ~5x10^11 Mo. Here we study how different methods of analysis can lead to such widely varying results. We find that, contrary to recent claims in the literature, potential contamination of IRAC 3-8 um photometry from hot dust associated with an active nucleus is not the origin of the published discrepancies in derived M*. Instead, we expose in detail how inferred M* depends on assumptions made in the photometric fitting, and quantify the individual and cumulative effects of different choices of initial mass function, different brands of evolutionary synthesis models, and different forms of assumed star-formation history. We review current observational evidence for and against these alternatives as well as clues from the hydrodynamical simulations, and conclude that, for the most justifiable choices of these model inputs, the average M* of SMGs is ~2x10^11 Mo. We also confirm that this number is perfectly reasonable in the light of the latest measurements of their dynamical masses, and the evolving M* function of the overall galaxy population. M* of this order imply that the average sSFR of SMGs is comparable to that of other star-forming galaxies at z>2, at 2-3 Gyr^-1. This supports the view that, while rare outliers may be found at any M*, most SMGs simply form the top end of the main-sequence of star-forming galaxies at these redshifts. Conversely, this argues strongly against the viewpoint that SMGs are extreme pathological objects, of little relevance in the cosmic history of star-formation.



قيم البحث

اقرأ أيضاً

We present the results of a photometric redshift analysis designed to identify z>6 galaxies from the near-IR HST imaging in three deep fields (HUDF, HUDF09-2 & ERS). By adopting a rigorous set of criteria for rejecting low-z interlopers, and by emplo ying a deconfusion technique to allow the available IRAC imaging to be included in the candidate selection process, we have derived a robust sample of 70 Lyman-break galaxies (LBGs) spanning the redshift range 6.0<z<8.7. Based on our final sample we investigate the distribution of UV spectral slopes (beta), finding a variance-weighted mean value of <beta>=-2.05 +/- 0.09 which, contrary to some previous results, is not significantly bluer than displayed by lower-redshift starburst galaxies. We confirm the correlation between UV luminosity and stellar mass reported elsewhere, but based on fitting galaxy templates featuring a range of star-formation histories, metallicities and reddening we find that, at z>=6, the range in mass-to-light ratio (M*/L_UV) at a given UV luminosity could span a factor of ~50. Focusing on a sub-sample of twenty-one candidates with IRAC detections at 3.6-microns we find that L* LBGs at z~6.5 have a median stellar mass of M* = (2.1 +/- 1.1) x 10^9 Msun and a median specific star-formation rate of 1.9 +/- 0.8 Gyr^-1. Using the same sub-sample we have investigated the influence of nebular continuum and line emission, finding that for the majority of candidates (16 out of 21) the best-fitting stellar-mass estimates are reduced by less than a factor of 2.5. Finally, a detailed comparison of our final sample with the results of previous studies suggests that, at faint magnitudes, several high-redshift galaxy samples in the literature are significantly contaminated by low-redshift interlopers (abridged).
118 - I. Labbe 2012
Using new ultradeep Spitzer/IRAC photometry from the IRAC Ultradeep Field program (IUDF), we investigate the stellar populations of a sample of 63 Y-dropout galaxy candidates at z~8, only 650Myr after the Big Bang. The sources are selected from HST/A CS+WFC3/IR data over the Hubble Ultra Deep Field (HUDF), two HUDF parallel fields, and wide area data over the CANDELS/GOODS-South. The new Spitzer/IRAC data increase the coverage at 3.6 micron and 4.5 micron to ~120h over the HUDF reaching depths of ~28 (AB,1 sigma). The improved depth and inclusion of brighter candidates result in direct >3 sigma IRAC detections of 20/63 sources, of which 11/63 are detected at > 5 sigma. The average [3.6]-[4.5] colors of IRAC detected galaxies at z~8 are markedly redder than those at z~7, observed only 130Myr later. The simplest explanation is that we witness strong rest-frame optical emission lines (in particular [OIII]4959,5007+Hbeta) moving through the IRAC bandpasses with redshift. Assuming that the average rest-frame spectrum is the same at both z~7 and z~8 we estimate a rest-frame equivalent width of W([OIII]4959,5007+Hbeta) = 670 (+260,-170) Angstrom contributing 0.56 (+0.16,-0.11) mag to the 4.5 micron filter at z~8. The corresponding W(Halpha) = 430 (+160,-110) Angstrom implies an average specific star formation rate of sSFR = 11 (+11,-5) Gyr^-1 and a stellar population age of 100 (+100,-50) Myr. Correcting the spectral energy distribution for the contribution of emission lines lowers the average best-fit stellar masses and mass-to-light ratios by x3, decreasing the integrated stellar mass density to rho*(z=8,MUV<-18)=0.6 (+0.4,-0.3) x 10^6 Msun Mpc^-3.
To understand cosmic mass assembly in the Universe at early epochs, we primarily rely on measurements of stellar mass and star formation rate of distant galaxies. In this paper, we present stellar masses and star formation rates of six high-redshift ($2.8leq z leq 5.7$) dusty, star-forming galaxies (DSFGs) that are strongly gravitationally lensed by foreground galaxies. These sources were first discovered by the South Pole Telescope (SPT) at millimeter wavelengths and all have spectroscopic redshifts and robust lens models derived from ALMA observations. We have conducted follow-up observations, obtaining multi-wavelength imaging data, using {it HST}, {it Spitzer}, {it Herschel} and the Atacama Pathfinder EXperiment (APEX). We use the high-resolution {it HST}/WFC3 images to disentangle the background source from the foreground lens in {it Spitzer}/IRAC data. The detections and upper limits provide important constraints on the spectral energy distributions (SEDs) for these DSFGs, yielding stellar masses, IR luminosities, and star formation rates (SFRs). The SED fits of six SPT sources show that the intrinsic stellar masses span a range more than one order of magnitude with a median value $sim$ 5 $times 10^{10}M_{Sun}$. The intrinsic IR luminosities range from 4$times 10^{12}L_{Sun}$ to 4$times 10^{13}L_{Sun}$. They all have prodigious intrinsic star formation rates of 510 to 4800 $M_{Sun} {rm yr}^{-1}$. Compared to the star-forming main sequence (MS), these six DSFGs have specific SFRs that all lie above the MS, including two galaxies that are a factor of 10 higher than the MS. Our results suggest that we are witnessing the ongoing strong starburst events which may be driven by major mergers.
In this work we analyze the physical properties of a sample of 153 star forming galaxies at z~0.84, selected by their H-alpha flux with a NB filter. B-band luminosities of the objects are higher than those of local star forming galaxies. Most of the galaxies are located in the blue cloud, though some objects are detected in the green valley and in the red sequence. After the extinction correction is applied virtually all these red galaxies move to the blue sequence, unveiling their dusty nature. A check on the extinction law reveals that the typical extinction law for local starbursts is well suited for our sample but with E(B-V)_stars=0.55 E(B-V)_gas. We compare star formation rates (SFR) measured with different tracers (H-alpha, UV and IR) finding that they agree within a factor of three after extinction correction. We find a correlation between the ratios SFR_FUV/SFR_H-alpha, SFR_IR/SFR_H-alpha and the EW(H-alpha) (i.e. weighted age) which accounts for part of the scatter. We obtain stellar mass estimations fitting templates to multi-wavelength photometry. The typical stellar mass of a galaxy within our sample is ~10^10 Msun. The SFR is correlated with stellar mass and the specific star formation rate (sSFR) decreases with it, indicating that massive galaxies are less affected by star formation processes than less massive ones. This result is consistent with the downsizing scenario. To quantify this downsizing we estimated the quenching mass M_Q for our sample at z~0.84, finding that it declines from M_Q ~10^12 Msun to M_Q ~8x10^10 Msun at the local Universe.
Star-formation activity is a key property to probe the structure formation and hence characterise the large-scale structures of the universe. This information can be deduced from the star formation rate (SFR) and the stellar mass (Mstar), both of whi ch, but especially the SFR, are very complex to estimate. Determining these quantities from UV, optical, or IR luminosities relies on complex modeling and on priors on galaxy types. We propose a method based on the machine-learning algorithm Random Forest to estimate the SFR and the Mstar of galaxies at redshifts in the range 0.01<z<0.3, independent of their type. The machine-learning algorithm takes as inputs the redshift, WISE luminosities, and WISE colours in near-IR, and is trained on spectra-extracted SFR and Mstar from the SDSS MPA-JHU DR8 catalogue as outputs. We show that our algorithm can accurately estimate SFR and Mstar with scatters of sigma_SFR=0.38 dex and sigma_Mstar=0.16 dex for SFR and stellar mass, respectively, and that it is unbiased with respect to redshift or galaxy type. The full-sky coverage of the WISE satellite allows us to characterise the star-formation activity of all galaxies outside the Galactic mask with spectroscopic redshifts in the range 0.01<z<0.3. The method can also be applied to photometric-redshift catalogues, with best scatters of sigma_SFR=0.42 dex and sigma_Mstar=0.24 dex obtained in the redshift range 0.1<z<0.3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا