ترغب بنشر مسار تعليمي؟ اضغط هنا

The IMF and Star Formation History of the Stellar Clusters in the Vela D Cloud

61   0   0.0 ( 0 )
 نشر من قبل Fabrizio Massi
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of a Near-Infrared deep photometric survey of a sample of six embedded star clusters in the Vela-D molecular cloud, all associated with luminous (~10^3 Lsun) IRAS sources. The clusters are unlikely to be older than a few 10^6 yrs, since all are still associated with molecular gas. We employed the fact that all clusters lie at the same distance and were observed with the same instrumental setting to derive their properties in a consistent way, being affected by the same instrumental and observational biases. We extracted the clusters K Luminosity Functions (KLF) and developed a simple method to correct them for extinction, based on colour-magnitude diagrams. The reliability of the method has been tested by constructing synthetic clusters from theoretical tracks for pre-main sequence stars and a standard Initial Mass Function (IMF). The clusters IMFs have been derived from the dereddened KLFs by adopting a set of pre-main sequence evolutionary tracks and assuming coeval star formation. All clusters are small (~100 members) and compact (radius ~0.1-0.2 pc); their most massive stars are intermediate-mass (~2-10 Msun) ones. The dereddened KLFs are likely to arise from the same distribution, suggesting that the selected clusters have quite similar IMFs and star formation histories. The IMFs are consistent with those derived for field stars and clusters. Adding them together we found that the ``global IMF appears steeper at the high-mass end and exhibits a drop-off at ~10 Msun. In fact, a standard IMF would predict a star with M>22.5 Msun within one of the clusters, which is not found. Hence, either high-mass stars need larger clusters to be formed, or the IMF of the single clusters is steeper at the high-mass end because of the physical conditions in the parental gas.



قيم البحث

اقرأ أيضاً

NGC1846 and NGC1783 are two massive star clusters in the Large Magellanic Cloud, hosting both an extended main sequence turn-off and a dual clump of red giants. They present similar masses but differ mainly in angular size. Starting from their high-q uality ACS data in the F435W, F555W and F814W filters, and updated sets of stellar evolutionary tracks, we derive their star formation rates as a function of age, SFR(t), by means of the classical method of CMD reconstruction which is usually applied to nearby galaxies. The method confirms the extended periods of star formation derived from previous analysis of the same data. When the analysis is performed for a finer resolution in age, we find clear evidence for a 50-Myr long hiatus between the oldest peak in the SFR(t), and a second prolonged period of star formation, in both clusters. For the more compact cluster NGC1846, there seems to be no significant difference between the SFR(t) in the cluster centre and in an annulus with radii between 20 and 60 arcsec (from 4.8 to 15.4 pc). The same does not occur in the more extended NGC1783 cluster, where the outer ring (between 33 and 107 arcsec, from 8.0 to 25.9 pc) is found to be slightly younger than the centre. We also explore the best-fitting slope of the present-day mass function and binary fraction for the different cluster regions, finding hints of a varying mass function between centre and outer ring in NGC1783. These findings are discussed within the present scenarios for the formation of clusters with multiple turn-offs.
Many recent works have attempted to constrain the stellar initial mass function (IMF) inside massive clusters by comparing their dynamical mass estimates to the measured light. These studies have come to different conclusions, with some claiming stan dard Kroupa-type IMFs, while others have claimed extreme non-standard IMFs. However, the results appear to be correlated with the age of the clusters, as older clusters (>80 Myr) all appear to be well fit by a Kroupa-type IMF whereas younger clusters display significant scatter in their best fitting IMF. Here we show that this is likely due to the fact that young clusters are out of virial equilibrium and therefore cannot be used for such studies. Hence only the older clusters are suitable for IMF studies. Using only these clusters we find that the IMF does not vary significantly. The youngest clusters can be used instead to constrain the star-formation efficiency (SFE) within clusters. We find that the SFE varies between 20 and 60% and we conclude that approximately 60% of young clusters are unbound and will not survive for more than a few 10s of Myr (i.e. infant mortality).
83 - F. Massi 2007
The Vela Molecular Ridge is one of the nearest intermediate-mass star forming regions, located within the galactic plane and outside the solar circle. Cloud D, in particular, hosts a number of small embedded young clusters. We present the results of a large-scale map in the dust continuum at 1.2 mm of a ~ 1deg x 1deg area within cloud D. The main aim of the observations was to obtain a complete census of cluster-forming cores and isolated (both high- and low-mass) young stellar objects in early evolutionary phases. The bolometer array SIMBA at SEST was used to map the dust emission in the region with a typical sensitivity of ~ 20 mJy/beam. This allows a mass sensitivity of ~ 0.2 Msun. The resolution is 24 arcsec, corresponding to ~ 0.08 pc, roughly the radius of a typical young embedded cluster in the region. The continuum map is also compared to a large scale map of CO(1-0) integrated emission. Using the CLUMPFIND algorithm, a robust sample of 29 cores has been obtained, spanning the size range 0.03 - 0.25 pc and the mass range 0.4 - 88 Msun. The most massive cores are associated both with red IRAS sources and with embedded young clusters, and coincide with CO(1-0) integrated emission peaks. The cores are distributed according to a mass spectrum ~ M^{-alpha} and a mass-versus-size relation ~ D^{x}, with alpha ~ 1.45 - 1.9 and x ~ 1.1 - 1.7. They appear to originate in the fragmentation of gas filaments seen in CO(1-0) emission and their formation is probably induced by expanding shells of gas. The core mass spectrum is flatter than the Initial Mass Function of the associated clusters in the same mass range, suggesting further fragmentation within the most massive cores. A threshold A_V ~ 12 mag seems to be required for the onset of star formation in the gas.
A new, unbiased Spitzer-MIPS imaging survey (~1.8 square degs) of the young stellar content of the Vela Molecular Cloud-D is presented. The survey is complete down to 5mJy and 250mJy at 24micron (mu) and 70mu, respectively. 849 sources are detected a t 24mu and 52 of them also have a 70mu counterpart. The VMR-D region is one that we have already partially mapped in dust and gas millimeter emission, and we discuss the correlation between the Spitzer compact sources and the mm contours. About half of the 24mu sources are located inside the region delimited by the 12CO(1-0) contours (corresponding to only one third of the full area mapped with MIPS) with a consequent density increase of about 100% of the 24mu sources [four times for 70mu ones] moving from outside to inside the CO contours. About 400 sources have a 2MASS counterpart. So we have constructed a Ks vs. Ks-[24] diagram and identified the protostellar population. We find an excess of Class I sources in VMR-D in comparison with other star forming regions. This result is reasonably biased by the sensitivity limits, or, alternatively, may reflect a very short lifetime (<=10^6yr) of the protostellar content in this cloud. The MIPS images have identified embedded cool objects in most of the previously identified starless cores; in addition, there are 6 very young, possibly Class 0 objects identified. Finally we report finding of the driving sources for a set of five out of six very compact protostellar jets previously discovered in near-infrared images.
70 - F. Massi 2019
Context The Vela Molecular Ridge is one of the nearest (700 pc) giant molecular cloud (GMC) complexes hosting intermediate-mass (up to early B, late O stars) star formation, and is located in the outer Galaxy, inside the Galactic plane. Vela C is one of the GMCs making up the Vela Molecular Ridge, and exhibits both sub-regions of robust and sub-regions of more quiescent star formation activity, with both low- and intermediate(high)-mass star formation in progress. Aims We aim to study the individual and global properties of dense dust cores in Vela C, and aim to search for spatial variations in these properties which could be related to different environmental properties and/or evolutionary stages in the various sub-regions of Vela C. Methods We mapped the submillimetre (345 GHz) emission from vela C with LABOCA (beam size 19.2, spatial resolution ~0.07 pc at 700 pc) at the APEX telescope. We used the clump-finding algorithm CuTEx to identify the compact submillimetre sources. We also used SIMBA (250 GHz) observations, and Herschel and WISE ancillary data. The association with WISE red sources allowed the protostellar and starless cores to be separated, whereas the Herschel dataset allowed the dust temperature to be derived for a fraction of cores. The protostellar and starless core mass functions (CMFs) were constructed following two different approaches, achieving a mass completeness limit of 3.7 Msun. Results We retrieved 549 submillimetre cores, 316 of which are starless and mostly gravitationally bound (therefore prestellar in nature). Both the protostellar and the starless CMFs are consistent with the shape of a Salpeter initial mass function in the high-mass part of the distribution. Clustering of cores at scales of 1--6 pc is also found, hinting at fractionation of magnetised, turbulent gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا