ﻻ يوجد ملخص باللغة العربية
Many recent works have attempted to constrain the stellar initial mass function (IMF) inside massive clusters by comparing their dynamical mass estimates to the measured light. These studies have come to different conclusions, with some claiming standard Kroupa-type IMFs, while others have claimed extreme non-standard IMFs. However, the results appear to be correlated with the age of the clusters, as older clusters (>80 Myr) all appear to be well fit by a Kroupa-type IMF whereas younger clusters display significant scatter in their best fitting IMF. Here we show that this is likely due to the fact that young clusters are out of virial equilibrium and therefore cannot be used for such studies. Hence only the older clusters are suitable for IMF studies. Using only these clusters we find that the IMF does not vary significantly. The youngest clusters can be used instead to constrain the star-formation efficiency (SFE) within clusters. We find that the SFE varies between 20 and 60% and we conclude that approximately 60% of young clusters are unbound and will not survive for more than a few 10s of Myr (i.e. infant mortality).
We use stellar and dynamical mass profiles, combined with a stellar population analysis, of 32 brightest cluster galaxies (BCGs) at redshifts of 0.05 $leq z leq$ 0.30, to place constraints on their stellar Initial Mass Function (IMF). We measure the
Most stars are born in rich young stellar clusters (YSCs) embedded in giant molecular clouds. The most massive stars live out their short lives there, profoundly influencing their natal environments by ionizing HII regions, inflating wind-blown bubbl
Observations of Young Star Cluster ({bf YSC}) systems in interacting galaxies are reviewed with particular emphasis on their Luminosity Functions ({bf LF}) and colour distributions. A few spectroscopic abundance measurements are available. They will
We present the results of a Near-Infrared deep photometric survey of a sample of six embedded star clusters in the Vela-D molecular cloud, all associated with luminous (~10^3 Lsun) IRAS sources. The clusters are unlikely to be older than a few 10^6 y
The luminous material in clusters of galaxies falls primarily into two forms: the visible galaxies and the X-ray emitting intra-cluster medium. The hot intra-cluster gas is the major observed baryonic component of clusters, about six times more massi