ترغب بنشر مسار تعليمي؟ اضغط هنا

The star formation history of the Large Magellanic Cloud star clusters NGC1846 and NGC1783

156   0   0.0 ( 0 )
 نشر من قبل Leo Alberto Girardi
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NGC1846 and NGC1783 are two massive star clusters in the Large Magellanic Cloud, hosting both an extended main sequence turn-off and a dual clump of red giants. They present similar masses but differ mainly in angular size. Starting from their high-quality ACS data in the F435W, F555W and F814W filters, and updated sets of stellar evolutionary tracks, we derive their star formation rates as a function of age, SFR(t), by means of the classical method of CMD reconstruction which is usually applied to nearby galaxies. The method confirms the extended periods of star formation derived from previous analysis of the same data. When the analysis is performed for a finer resolution in age, we find clear evidence for a 50-Myr long hiatus between the oldest peak in the SFR(t), and a second prolonged period of star formation, in both clusters. For the more compact cluster NGC1846, there seems to be no significant difference between the SFR(t) in the cluster centre and in an annulus with radii between 20 and 60 arcsec (from 4.8 to 15.4 pc). The same does not occur in the more extended NGC1783 cluster, where the outer ring (between 33 and 107 arcsec, from 8.0 to 25.9 pc) is found to be slightly younger than the centre. We also explore the best-fitting slope of the present-day mass function and binary fraction for the different cluster regions, finding hints of a varying mass function between centre and outer ring in NGC1783. These findings are discussed within the present scenarios for the formation of clusters with multiple turn-offs.



قيم البحث

اقرأ أيضاً

The HST/ACS colour-magnitude diagrams (CMD) of the populous LMC star cluster NGC1751 present both a broad main sequence turn-off and a dual clump of red giants. We show that the latter feature is real and associate it to the first appearance of elect ron-degeneracy in the H-exhausted cores of the cluster stars. We then apply to the NGC1751 data the classical method of star formation history (SFH) recovery via CMD reconstruction, for different radii corresponding to the cluster centre, the cluster outskirts, and the underlying LMC field. The mean SFH derived from the LMC field is taken into account during the stage of SFH-recovery in the cluster regions, in a novel approach which is shown to significantly improve the quality of the SFH results. For the cluster centre, we find a best-fitting solution corresponding to prolonged star formation for a for a timespan of 460 Myr, instead of the two peaks separated by 200 Myr favoured by a previous work based on isochrone fitting. Remarkably, our global best-fitting solution provides an excellent fit to the data - with chi^2 and residuals close to the theoretical minimum - reproducing all the CMD features including the dual red clump. The results for a larger ring region around the centre indicate even longer star formation, but in this case the results are of lower quality, probably because of the differential extinction detected in the area. Therefore, the presence of age gradients in NGC1751 could not be probed. Together with our previous findings for the SMC cluster NGC419, the present results for the NGC1751 centre argue in favour of multiple star formation episodes (or continued star formation) being at the origin of the multiple main sequence turn-offs in Magellanic Cloud clusters with ages around 1.5 Gyr.
We present Washington system colour-magnitude diagrams (CMDs) for 17 practically unstudied star clusters located in the bar as well as in the inner disc and outer regions of the Large Magellanic Cloud (LMC). Cluster sizes were estimated from star cou nts distributed throughout the entire observed fields. Based on the best fits of theoretical isochrones to the cleaned $(C-T_1,T_1)$ CMDs, as well as on the $delta T_1$ parameter and the standard giant branch method, we derive ages and metallicities for the cluster sample. Four objects are found to be intermediate-age clusters (1.8-2.5 Gyr), with [Fe/H] ranging from -0.66 to -0.84. With the exception of SL263, a very young cluster ($sim$ 16 Myr), the remaining 12 objects are aged between 0.32 and 0.89 Gyr, with their [Fe/H] values ranging from -0.19 to -0.50. We combined our results with those for other 231 clusters studied in a similar way using the Washington system. The resulting age-metallicity relationship shows a significant dispersion in metallicities, whatever age is considered. Although there is a clear tendency for the younger clusters to be more metal-rich than the intermediate ones, we believe that none of the chemical evolution models currently available in the literature reasonably well represents the recent chemical enrichment processes in the LMC clusters. The present sample of 17 clusters is part of our ongoing project of generating a database of LMC clusters homogeneously studied using the Washington photometric system and applying the same analysis procedure
The main goal of this study is to compile a catalogue including the fundamental parameters of a complete sample of 277 star clusters (SCs) of the Large Magellanic Cloud (LMC) observed in the Washington photometric system, including 82 clusters very r ecently studied by us. All the clusters parameters such as radii, deprojected distances, reddenings, ages and metallicities have been obtained by appyling essentially the same procedures which are briefly described here. We have used empirical cumulative distribution functions to examine age, metallicity and deprojected distance distributions for different cluster subsamples of the catalogue. Our new sample made up of 82 additional clusters recently studied by us represents about a 40% increase in the total number of LMC SCs observed up to now in the Washington photometric system. In particular, we report here the fundamental parameters obtained for the first time for 42 of these clusters. We found that single LMC SCs are typically older than multiple SCs. Both single and multiple SCs exhibit asymmetrical distributions in log (age). We compared cluster ages derived through isochrone fittings obtained using different models of the Padova group. Although $t_G$ and $t_B$ ages obtained using isochrones from Girardi et al. (2002) and Bressan et al. (2012), respectively, are consistent in general terms, we found that $t_B$ values are not only typically larger than $t_G$ ages but also that Bressan et al.s age uncertainties are clearly smaller than the corresponding Girardi et al. values.
We present flux-calibrated integrated spectra in the optical range (3700-6800 AA) obtained at Complejo Astronomico El Leoncito (CASLEO, Argentina) for a sample of 10 concentrated star clusters belonging to the Large Magellanic Cloud (LMC). No previou s data exist for two of these objects (SL 142 and SL 624), while most of the remaining clusters have been only poorly studied. We derive simultaneously foreground $E(B-V)$ reddening values and ages for the cluster sample by comparing their integrated spectra with template LMC cluster spectra and with two different sets of simple stellar population models. Cluster reddening values and ages are also derived from both available interstellar extinction maps and by using diagnostic diagrams involving the sum of equivalent widths of some selected spectral features and their calibrations with age, respectively. For the studied sample, we derive ages between 1 Myr and 240 Myr. In an effort to create a spectral library at the LMC metallicity level with several clusters per age range, the cluster sample here presented stands out as a useful complement to previous ones.
Located at the tip of the wing of the Small Magellanic Cloud (SMC), the star-forming region NGC602/N90 is characterized by the HII nebular ring N90 and the young cluster of pre--main-sequence (PMS) and early-type main sequence stars NGC602. We presen t a thorough cluster analysis of the stellar sample identified with HST/ACS camera in the region. We show that apart from the central cluster, low-mass PMS stars are congregated in thirteen additional small compact sub-clusters at the periphery of NGC602. We find that the spatial distribution of the PMS stars is bimodal, with an unusually large fraction (~60%) of the total population being clustered, while the remaining is diffusely distributed in the inter-cluster area. From the corresponding color-magnitude diagrams we disentangle an age-difference of ~2.5Myr between NGC602 and the compact sub-clusters which appear younger. The diffuse PMS population appears to host stars as old as those in NGC602. Almost all detected PMS sub-clusters appear to be centrally concentrated. When the complete PMS stellar sample, including both clustered and diffused stars, is considered in our cluster analysis, it appears as a single centrally concentrated stellar agglomeration, covering the whole central area of the region. Considering also the hot massive stars of the system, we find evidence that this agglomeration is hierarchically structured. Based on our findings we propose a scenario, according to which the region NGC602/N90 experiences an active clustered star formation for the last ~5Myr. The central cluster NGC602 was formed first and rapidly started dissolving into its immediate ambient environment, possibly ejecting also massive stars found away from its center. Star formation continued in sub-clusters of a larger stellar agglomeration, introducing an age-spread of the order of 2.5Myr among the PMS populations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا