ﻻ يوجد ملخص باللغة العربية
The Dark Energy Survey (DES) will use a new imaging camera on the Blanco 4-m telescope at CTIO to image 5000 square degrees of sky in the South Galactic Cap in four optical bands, and to carry out repeat imaging over a smaller area to identify and measure lightcurves of Type Ia supernovae. The main imaging area overlaps the planned Sunyaev-Zeldovich survey of the South Pole Telescope. The idea behind DES is to use four distinct and largely independent methods to probe the properties of dark energy: baryon oscillations of the power spectrum, abundance and spatial distribution of clusters, weak gravitational lensing, and Type Ia supernovae. This white paper outlines, in broad terms, some of the theoretical issues associated with the first three of these probes (the issues for supernovae are mostly different in character), and with the general task of characterizing dark energy and distinguishing it from alternative explanations for cosmic acceleration. A companion white paper discusses the kind of numerical simulations and other theoretical tools that will be needed to address the these issues and to create mock catalogs that allow end-to-end tests of analysis procedures. Although we have been thinking about these problems in the specific context of DES, many of them are also relevant to other planned dark energy studies.
Low density regions are less affected by the nonlinear structure formation and baryonic physics. They are ideal places for probing the nature of dark energy, a possible explanation for the cosmic acceleration. Unlike void lensing, which requires iden
We investigate the possibility of using cosmological observations to probe and constrain an imperfect dark energy fluid. We consider a general parameterization of the dark energy component accounting for an equation of state, speed of sound and visco
This overview article describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4m Blanco
The presence of inhomogeneities modifies the cosmic distances through the gravitational lensing effect, and, indirectly, must affect the main cosmological tests. Assuming that the dark energy is a smooth component, the simplest way to account for the
In this work, we study a class of early dark energy (EDE) models, in which, unlike in standard DE models, a substantial amount of DE exists in the matter-dominated era, self-consistently including DE perturbations. Our analysis shows that, marginaliz