ﻻ يوجد ملخص باللغة العربية
We investigate the possibility of using cosmological observations to probe and constrain an imperfect dark energy fluid. We consider a general parameterization of the dark energy component accounting for an equation of state, speed of sound and viscosity. We use present and future data from the cosmic microwave background radiation (CMB), large scale structures and supernovae type Ia. We find that both the speed of sound and viscosity parameters are difficult to nail down with the present cosmological data. Also, we argue that it will be hard to improve the constraints significantly with future CMB data sets. The implication is that a perfect fluid description might ultimately turn out to be a phenomenologically sufficient description of all the observational consequences of dark energy. The fundamental lesson is however that even then one cannot exclude, by appealing to observational evidence alone, the possibility of imperfectness in dark energy.
We study the effects of dark energy (DE) anisotropic stress on features of the matter power spectrum (PS). We employ the Parametrized Post-Friedmannian (PPF) formalism to emulate an effective DE, and model its anisotropic stress properties through a
Since the discovery of the accelerated expansion of the universe, it was necessary to introduce a new component of matter distribution called dark energy. The standard cosmological model considers isotropy of the pressure and assumes an equation of s
The Dark Energy Survey (DES) will use a new imaging camera on the Blanco 4-m telescope at CTIO to image 5000 square degrees of sky in the South Galactic Cap in four optical bands, and to carry out repeat imaging over a smaller area to identify and me
Low density regions are less affected by the nonlinear structure formation and baryonic physics. They are ideal places for probing the nature of dark energy, a possible explanation for the cosmic acceleration. Unlike void lensing, which requires iden
In the context of the dark energy scenario, the Einstein Yang-Mills Higgs model in the SO(3) representation was studied for the first time by M. Rinaldi (see JCAP 1510, 023 (2015)) in a homogeneous and isotropic spacetime. We revisit this model, find