ترغب بنشر مسار تعليمي؟ اضغط هنا

The Dark Energy Survey: more than dark energy - an overview

119   0   0.0 ( 0 )
 نشر من قبل Ofer Lahav
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This overview article describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae and other transients. The main goals of DES are to characterise dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from `Science Verification, and from the first, second and third seasons of observations), what DES can tell us about the solar system, the Milky Way, galaxy evolution, quasars, and other topics. In addition, we show that if the cosmological model is assumed to be Lambda+ Cold Dark Matter (LCDM) then important astrophysics can be deduced from the primary DES probes. Highlights from DES early data include the discovery of 34 Trans Neptunian Objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed).



قيم البحث

اقرأ أيضاً

Galaxies are often used as tracers of the large scale structure (LSS) to measure the Integrated Sachs-Wolfe effect (ISW) by cross-correlating the galaxy survey maps with the Cosmic Microwave Background (CMB) map. We use the Cosmic Infrared Background (CIB) as a tracer of the LSS to perform a theoretical CIB-CMB cross-correlation to measure the ISW for different Planck HFI frequencies. We discuss the detectability of this ISW signal using a Signal-to-noise ratio analysis and find that the ISW detected this way can provide us with the highest SNR for a single tracer ranging from 5 to 6.7 (maximum being for 857 GHz) with the CIB and CMB maps extracted over the whole sky. A Fisher matrix analysis showed that this measurement of the ISW can improve the constraints on the cosmological parameters; especially the equation of state of the dark energy $w$ by $sim 47%$. Performing a more realistic analysis including the galactic dust residuals in the CIB maps over realistic sky fractions shows that the dust power spectra dominate over the CIB power spectra at $ell < 100$ and ISW cant be detected with high SNR. We perform the cross-correlation on the existing CIB-CMB maps over $sim 11%$ of the sky in the southern hemisphere and find that the ISW is not detected with the existing CIB maps over such small sky fractions.
We describe the Dark Energy Survey (DES) photometric data set assembled from the first three years of science operations to support DES Year 3 cosmology analyses, and provide usage notes aimed at the broad astrophysics community. Y3 Gold improves on previous releases from DES, Y1 Gold and Data Release 1 (DES DR1), presenting an expanded and curated data set that incorporates algorithmic developments in image detrending and processing, photometric calibration, and object classification. Y3 Gold comprises nearly 5000 square degrees of grizY imaging in the south Galactic cap, including nearly 390 million objects, with depth reaching S/N ~ 10 for extended objects up to $i_{AB}sim 23.0$, and top-of-the-atmosphere photometric uniformity $< 3$ mmag. Compared to DR1, photometric residuals with respect to Gaia are reduced by $50%$, and per-object chromatic corrections are introduced. Y3 Gold augments DES DR1 with simultaneous fits to multi-epoch photometry for more robust galaxy color measurements and corresponding photometric redshift estimates. Y3 Gold features improved morphological star-galaxy classification with efficiency $>98%$ and purity $>99%$ for galaxies with $19 < i_{AB} < 22.5$. Additionally, it includes per-object quality information, and accompanying maps of the footprint coverage, masked regions, imaging depth, survey conditions, and astrophysical foregrounds that are used to select the cosmology analysis samples. This paper will be complemented by online resources.
The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the Universe using the Baryon Acoustic Oscillation technique. The spectra of 35 million galaxies and quasars over 14000 square degrees will be m easured during the life of the experiment. A new prime focus corrector for the KPNO Mayall telescope will deliver light to 5000 fiber optic positioners. The fibers in turn feed ten broad-band spectrographs. We present an overview of the instrumentation, the main technical requirements and challenges, and the current status of the project.
203 - Fei Yu , Jingfei Zhang , Jianbo Lu 2010
So far, there have been no theories or observational data that deny the presence of interaction between dark energy and dark matter. We extend naturally the holographic dark energy (HDE) model, proposed by Granda and Oliveros, in which the dark energ y density includes not only the square of the Hubble scale, but also the time derivative of the Hubble scale to the case with interaction and the analytic forms for the cosmic parameters are obtained under the specific boundary conditions. The various behaviors concerning the cosmic expansion depend on the introduced numerical parameters which are also constrained. The more general interacting model inherits the features of the previous ones of HDE, keeping the consistency of the theory.
We present spectroscopy from the first three seasons of the Dark Energy Survey Supernova Program (DES-SN). We describe the supernova spectroscopic program in full: strategy, observations, data reduction, and classification. We have spectroscopically confirmed 307 supernovae, including 251 type Ia supernovae (SNe Ia) over a redshift range of $0.017 < z < 0.85$. We determine the effective spectroscopic selection function for our sample, and use it to investigate the redshift-dependent bias on the distance moduli of SNe Ia we have classified. We also provide a full overview of the strategy, observations, and data products of DES-SN, which has discovered 12,015 likely supernovae during these first three seasons. The data presented here are used for the first cosmology analysis by DES-SN (DES-SN3YR), the results of which are given in DES Collaboration (2018a).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا