ترغب بنشر مسار تعليمي؟ اضغط هنا

Assessing Alternatives for Directional Detection of a WIMP Halo

40   0   0.0 ( 0 )
 نشر من قبل Lawrence M. Krauss
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Craig J. Copi




اسأل ChatGPT حول البحث

The future of direct terrestrial WIMP detection lies on two fronts: new, much larger low background detectors sensitive to energy deposition, and detectors with directional sensitivity. The former can large range of WIMP parameter space using well tested technology while the latter may be necessary if one is to disentangle particle physics parameters from astrophysical halo parameters. Because directional detectors will be quite difficult to construct it is worthwhile exploring in advance generally which experimental features will yield the greatest benefits at the lowest costs. We examine the sensitivity of directional detectors with varying angular tracking resolution with and without the ability to distinguish forward versus backward recoils, and compare these to the sensitivity of a detector where the track is projected onto a two-dimensional plane. The latter detector regardless of where it is placed on the Earth, can be oriented to produce a significantly better discrimination signal than a 3D detector without this capability, and with sensitivity within a factor of 2 of a full 3D tracking detector. Required event rates to distinguish signals from backgrounds for a simple isothermal halo range from the low teens in the best case to many thousands in the worst.



قيم البحث

اقرأ أيضاً

Distinguishing the signals due to scattering of WIMP dark matter off of nuclear targets from those due to background noise is a major challenge. The Earths motion relative to the galactic halo should produce halo-dependent seasonal modulation in the event rate, but it also should produce an angular signal that is both far stronger and less ambiguous. Distinct patterns in the recoil spectrum can reflect the details of the galactic halo. We derive a new formalism to calculate angular event rates, and present the predicted angular signal for a variety of halo models and calculate the number of events needed to distinguish a dark matter signal from an isotropic background.
The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies.
In this paper I will briefly introduce the idea of using Carbon Nanotubes (CNT) as target for the detection of low mass WIMPs with the additional information of directionality. I will also present the experimental efforts of developing a Time Project ion Chamber with a CNT target inside and the results of a test beam at the Beam Test Facility of INFN-LNF.
147 - J. Billard 2011
There is a worldwide effort toward the development of a large TPC (Time Projection Chamber) devoted to directional Dark Matter detection. All current projects are being designed to fulfill a unique goal : identifying weakly interacting massive partic le (WIMP) as such by taking advantage of the expected direction dependence of WIMP-induced events toward the constellation Cygnus. However such proof of discovery requires a careful statistical data treatment. In this paper, the discovery potential of forthcoming directional detectors is adressed by using a frequentist approach based on the profile likelihood ratio test statistic. This allows us to estimate the expected significance of a Dark Matter detection. Moreover, using this powerful test statistic, it is possible to propagate astrophysical and experimental uncertainties in the determination of the discovery potential of a given directional detection experiment. This way, we found that a 30 kg.year CF$_4$ directional experiment could reach a 3$sigma$ sensitivity at 90% C.L. down to $10^{-5}$ pb and $3.10^{-4}$ pb for the WIMP-proton axial cross section in the most optimistic and pessimistic scenario respectively.
113 - J. Billard 2011
Directional detection is a promising Dark Matter search strategy. Indeed, WIMP-induced recoils present a direction dependence toward the Cygnus constellation, while background-induced recoils exhibit an isotropic distribution in the galactic rest fra me. Taking advantage on these characteristic features and even in the presence of a sizeable background, we show for the first time the possibility to constrain the WIMP properties, both from particle and galactic halo physics, leading to an identification of non-baryonic Dark Matter. However, such results need highly accurate track reconstruction which should be reachable by the MIMAC detector using a dedicated readout combined with a likelihood analysis of recoiling nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا