ترغب بنشر مسار تعليمي؟ اضغط هنا

Assessing the discovery potential of directional detection of Dark Matter

162   0   0.0 ( 0 )
 نشر من قبل Julien Billard
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Billard




اسأل ChatGPT حول البحث

There is a worldwide effort toward the development of a large TPC (Time Projection Chamber) devoted to directional Dark Matter detection. All current projects are being designed to fulfill a unique goal : identifying weakly interacting massive particle (WIMP) as such by taking advantage of the expected direction dependence of WIMP-induced events toward the constellation Cygnus. However such proof of discovery requires a careful statistical data treatment. In this paper, the discovery potential of forthcoming directional detectors is adressed by using a frequentist approach based on the profile likelihood ratio test statistic. This allows us to estimate the expected significance of a Dark Matter detection. Moreover, using this powerful test statistic, it is possible to propagate astrophysical and experimental uncertainties in the determination of the discovery potential of a given directional detection experiment. This way, we found that a 30 kg.year CF$_4$ directional experiment could reach a 3$sigma$ sensitivity at 90% C.L. down to $10^{-5}$ pb and $3.10^{-4}$ pb for the WIMP-proton axial cross section in the most optimistic and pessimistic scenario respectively.



قيم البحث

اقرأ أيضاً

Direct Dark Matter searches are nowadays one of the most fervid research topics with many experimental efforts devoted to the search for nuclear recoils induced by the scattering of Weakly Interactive Massive Particles (WIMPs). Detectors able to reco nstruct the direction of the nucleus recoiling against the scattering WIMP are opening a new frontier to possibly extend Dark Matter searches beyond the neutrino background. Exploiting directionality would also prove the galactic origin of Dark Matter with an unambiguous signal-to-background separation. Indeed, the angular distribution of recoiled nuclei is centered around the direction of the Cygnus constellation, while the background distribution is expected to be isotropic. Current directional experiments are based on gas TPC whose sensitivity is limited by the small achievable detector mass. In this paper we present the discovery potential of a directional experiment based on the use of a solid target made of newly developed nuclear emulsions and of optical read-out systems reaching unprecedented nanometric resolution.
174 - J. Billard 2010
Directional detection of galactic Dark Matter is a promising search strategy for discriminating genuine WIMP events from background ones. However, to take full advantage of this powerful detection method, one need to be able to extract information fr om an observed recoil map to identify a WIMP signal. We present a comprehensive formalism, using a map-based likelihood method allowing to recover the main incoming direction of the signal, thus proving its galactic origin, and the corresponding significance. Constraints are then deduced in the (sigma_n, m_chi) plane.
107 - F. Mayet 2010
Directional detection of galactic Dark Matter is a promising search strategy for discriminating geniune WIMP events from background ones. We present technical progress on gaseous detectors as well as recent phenomenological studies, allowing the design and construction of competitive experiments.
217 - F. Mayet 2012
Directional detection is a promising Dark Matter search strategy. Taking advantage on the rotation of the Solar system around the galactic center through the Dark Matter halo, it allows to show a direction dependence of WIMP events that may be a powe rful tool to identify genuine WIMP events as such. Directional detection strategy requires the simultaneous measurement of the energy and the 3D track of low energy recoils, which is a common challenge for all current projects of directional detectors.
119 - Gabriella Sciolla 2009
Among the many experimental techniques available, those providing directional information have the potential of yielding an unambiguous observation of WIMPs even in the presence of insidious backgrounds. A measurement of the distribution of arrival d irection of WIMPs can also discriminate between Galactic Dark Matter halo models. In this article, I will discuss the motivation for directional detectors and review the experimental techniques used by the various experiments. I will then describe one of them, the DMTPC detector, in more detail.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا