ترغب بنشر مسار تعليمي؟ اضغط هنا

Readout technologies for directional WIMP Dark Matter detection

147   0   0.0 ( 0 )
 نشر من قبل James Battat
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies.

قيم البحث

اقرأ أيضاً

195 - D. Santos , J. Billard , G. Bosson 2013
The dark matter directional detection opens a new field in cosmology bringing the possibility to build a map of nuclear recoils that would be able to explore the galactic dark matter halo giving access to a particle characterization of such matter an d the shape of the halo. The MIMAC (MIcro-tpc MAtrix of Chambers) collaboration has developed in the last years an original prototype detector based on the direct coupling of large pixelized micromegas with a devoted fast self-triggered electronics showing the feasibility of a new generation of directional detectors. The discovery potential of this search strategy is discussed and illustrated. In June 2012, the first bi-chamber prototype has been installed at Modane Underground Laboratory (LSM) and the first underground background events, the gain stability and calibration are shown.
123 - D. Santos , G. Bosson , J.L. Bouly 2013
Directional detection of non-baryonic Dark Matter is a promising search strategy for discriminating WIMP events from neutrons, the ultimate background for dark matter direct detection. This strategy requires both a precise measurement of the energy d own to a few keV and 3D reconstruction of tracks down to a few mm. The MIMAC (MIcro-tpc MAtrix of Chambers) collaboration has developed in the last years an original prototype detector based on the direct coupling of large pixelized micromegas with a special developed fast self-triggered electronics showing the feasibility of a new generation of directional detectors. The first bi-chamber prototype has been installed at Modane, underground laboratory in June 2012. The first undergournd background events, the gain stability and calibration are shown. The first spectrum of nuclear recoils showing 3D tracks coming from the radon progeny is presented.
94 - J. Billard 2014
Over the past decades, several ideas and technologies have been developed to directly detect WIMP from the galactic halo. All these detection strategies share the common goal of discriminating a WIMP signal from the residual backgrounds. By directly detecting WIMPs, one can measure some or all of the observables associated to each nuclear recoil candidates, such as their energy and direction. In this study, we compare and examine the discovery potentials of each readout strategies from counting only (bubble chambers) to directional detectors (Time Projection Chambers) with 1d-, 2d-, and 3d-sensitivity. Using a profile likelihood analysis, we show that, in the case of a large and irreducible background contamination characterized by an energy distribution similar to the expected WIMP signal, directional information can improve the sensitivity of the experiment by several orders of magnitude. We also found that 1d directional detection is only less effective than a full 3d directional sensitivity by about a factor of 3, or 10 if we assume no sense recognition, still improving by a factor of 2 or more if only the energy of the events is being measured.
CYGNO is a project realising a cubic meter demonstrator to study the scalability of the performance of the optical approach for the readout of large-volume, GEM-equipped TPC. This is part of the CYGNUS proto-collaboration which aims at constructing a network of underground observatories for directional Dark Matter search. The combined use of high-granularity sCMOS and fast sensors for reading out the light produced in GEM channels during the multiplication processes was shown to allow on one hand to reconstruct 3D direction of the tracks, offering accurate energy measurements and sensitivity to the source directionality and, on the other hand, a high particle identification capability very useful to distinguish nuclear recoils. Results of the performed R&D and future steps toward a 30-100 cubic meter experiment will be presented.
Sensitivities of current directional dark matter search detectors using gas time projection chambers are now constrained by target mass. A ton-scale gas TPC detector will require large charge readout areas. We present a first demonstration of a novel ThGEM-Multiwire hybrid charge readout technology which combines the robust nature and high gas gain of Thick Gaseous Electron Multipliers with lower capacitive noise of a one-plane multiwire charge readout in SF$_6$ target gas. Measurements performed with this hybrid detector show an ion drift velocity of $139~pm~12~text{ms}^{-1}$ in a reduced drift field $text{E/N}$ of $93~text{Td}~(10^{-17}~text{V cm}^{2})$ at a gas gain of $2470pm160$ in 20 Torr of pure SF$_text{6}$ target gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا