ﻻ يوجد ملخص باللغة العربية
(Abridged) We present in this paper a sample of 14 nearby clusters of galaxies observed with the ROSAT/PSPC. We only select clusters with low galactic nH in order to trace the X-ray emitting intra-cluster medium (ICM) out to large radii. We convert the X-ray surface brightness profiles of the clusters into emission measure profiles scaled to the classical scaling relations based on the spherical collapse model. We sort the clusters into different temperature bins and stack the scaled emission measure (ScEM) profiles of clusters together. The stacked profiles allow us to observe out to radii r>r_200. In the center we find that the ScEM profiles deviate from predicted scaling laws. This result is in very good agreement with current studies on the L_X-T relation and the entropy - temperature relation (S propto T^0.65) found recently. At radii r>0.4r_200 we find that the ScEM profiles agree well within the error bars, suggesting self-similarity. Fitting beta-models to the overall ScEM profiles we find for the different sub samples r_c=0.15-0.18 r_200 and beta=0.8, which is higher than beta=2/3 often found. The beta-model is generally a better representation for hotter than for cooler clusters. We see indications for continuous steepening of the profiles with increasing radius: at radii r>0.8r_200 the profiles are systematically below the beta-model curve with beta=0.8. We discuss our results with respect to the observed X-ray luminosity L_X-T relation, the gas mass M_gas-T relation and the total mass M-T relation. We also address implications on the origin of the observed S-T relation. Furthermore we discuss the observed steepness of the X-ray profiles, which falls off more rapidly than predicted from the NFW-profile for cold dark matter halos.
We present results from a joint X-ray/Sunyaev-Zeldovich modeling of the intra-cluster gas using XMM-Newton and APEX-SZ imaging data. The goal is to study the physical properties of the intra-cluster gas with a non-parametric de-projection method that
Stars in globular clusters (GCs) lose a non negligible amount of mass during their post-main sequence evolution. This material is then expected to build up a substantial intra-cluster medium (ICM) within the GC. However, the observed gas content in G
We have analyzed X-ray spectra from six galaxy clusters which contain cooling flows: A85, A478, A1795, A2142, A2147, & A2199. The X-ray spectra were taken with the HEAO1-A2 Medium and High Energy Detectors and the Einstein Solid State Spectrometer. F
The Intra-Cluster Medium (ICM) is a rarefied, hot, highly ionized, metal rich, weakly magnetized plasma. In these proceeding, after having reviewed some basic ICM properties, I discuss recent results obtained with the BeppoSAX, XMM-Newton and Chandra
We present numerical simulations of the dynamical and chemical evolution of galaxy clusters. X-ray spectra show that the intra-cluster medium contains a significant amount of metals. As heavy elements are produced in the stars of galaxies material fr