ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint X-ray/Sunyaev-Zeldovich Analysis of the Intra-Cluster Medium

271   0   0.0 ( 0 )
 نشر من قبل Kaustuv Basu
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kaustuv Basu




اسأل ChatGPT حول البحث

We present results from a joint X-ray/Sunyaev-Zeldovich modeling of the intra-cluster gas using XMM-Newton and APEX-SZ imaging data. The goal is to study the physical properties of the intra-cluster gas with a non-parametric de-projection method that is, aside from the assumption of spherical symmetry, free from modeling bias. We demonstrate a decrease of gas temperature in the cluster outskirts, and also measure the gas entropy profile, both of which are obtained for the first time independently of X-ray spectroscopy, using Sunyaev-Zeldovich and X-ray imaging data. The contribution of the APEX-SZ systematic uncertainties in measuring the gas temperature at large radii is shown to be small compared to the XMM-Newton and Chandra systematic spectroscopic errors.

قيم البحث

اقرأ أيضاً

We perform a joint analysis of X-ray and Sunyaev Zeldovich (SZ) effect data using an analytic model that describes the gas properties of galaxy clusters. The joint analysis allows the measurement of the cluster gas mass fraction profile and Hubble co nstant independent of cosmological parameters. Weak cosmological priors are used to calculate the overdensity radius within which the gas mass fractions are reported. Such an analysis can provide direct constraints on the evolution of the cluster gas mass fraction with redshift. We validate the model and the joint analysis on high signal-to-noise data from the Chandra X-ray Observatory and the Sunyaev-Zeldovich Array for two clusters, Abell 2631 and Abell 2204.
The Planck collaboration has recently published precise and resolved measurements of the Sunyaev-Zeldovich effect in Abell 1656 (the Coma cluster of galaxies), so directly gauging the electron pressure profile in the intracluster plasma. On the other hand, such a quantity may be also derived from combining the density and temperature provided by X-ray observations of the thermal bremsstrahlung radiation emitted by the plasma. We find a model-independent tension between the SZ and the X-ray pressure, with the SZ one being definitely lower by 15-20%. We propose that such a challenging tension can be resolved in terms of an additional, non-thermal support to the gravitational equilibrium of the intracluster plasma. This can be straightforwardly included in our Supermodel, so as to fit in detail the Planck SZ profile while being consistent with the X-ray observables. Possible origins of the nonthermal component include cosmic-ray protons, ongoing turbulence, and relativistic electrons; given the existing observational constraints on the first two options, here we focus on the third. For this to be effective, we find that the electron population must include not only an energetic tail accelerated to gamma> 10^3 responsible for the Coma radiohalo, but also many more, lower energy electrons. The electron acceleration is to be started by merging events similar to those which provided the very high central entropy of the thermal intracluster plasma in Coma.
We use numerical simulations to predict the soft X-ray ([0.4-0.6] keV) and Sunyaev-Zeldovich signal (at 150 GHz) from the large scale structure in the Universe and then compute 2-point statistics to study the spatial distribution and time evolution o f the signals. The average X-ray signal predicted for the WHIM is in good agreement with observational constraints that set it at about 10% of the total Diffuse X-ray Background. The characteristic angle computed with the Autocorrelation Function is of the order of some arcminutes and becomes smaller at higher redshift. The power spectrum peak of the SZ due to the WHIM is at l~10000 and has amplitude of ~0.2 muK^2, about one order of magnitude below the signal measured with telescopes like Planck, ACT, and SPT. Even if the high-redshift WHIM signal is too weak to be detected using X-rays only, the small-scale correlation between X-ray and SZ maps is dominated by the high-redshift WHIM. This makes the analysis of the SZ signal in support of X-rays a promising tool to study the early time WHIM.
74 - Fabio Zandanel 2013
Cosmological hydrodynamical simulations of galaxy clusters are still challenged to produce a model for the intracluster medium that matches all aspects of current X-ray and Sunyaev-Zeldovich observations. To facilitate such comparisons with future si mulations and to enable realistic cluster population studies for modeling e.g., non-thermal emission processes, we construct a phenomenological model for the intracluster medium that is based on a representative sample of observed X-ray clusters. We create a mock galaxy cluster catalog based on the large collisionless N-body simulation MultiDark, by assigning our gas density model to each dark matter cluster halo. Our clusters are classified as cool-core and non cool-core according to a dynamical disturbance parameter. We demonstrate that our gas model matches the various observed Sunyaev-Zeldovich and X-ray scaling relations as well as the X-ray luminosity function, thus enabling to build a reliable mock catalog for present surveys and forecasts for future experiments. In a companion paper, we apply our catalogs to calculate non-thermal radio and gamma-ray emission of galaxy clusters. We make our cosmologically complete multi-frequency mock catalogs for the (non-)thermal cluster emission at different redshifts publicly and freely available online through the MultiDark database (www.multidark.org).
We describe Sunyaev-Zeldovich (SZ) effect measurements and analysis of the intracluster medium (ICM) pressure profiles of a set of 45 massive galaxy clusters imaged using Bolocam at the Caltech Submillimeter Observatory. We have used masses determine d from Chandra X-ray observations to scale each clusters profile by the overdensity radius R500 and the mass-and-redshift-dependent normalization factor P500. We deproject the average pressure profile of our sample into 13 logarithmically spaced radial bins between 0.07R500 and 3.5R500. We find that a generalized Navarro, Frenk, and White (gNFW) profile describes our data with sufficient goodness-of-fit and best-fit parameters (C500, alpha, beta, gamma, P0 = 1.18, 0.86, 3.67, 0.67, 4.29). We also use the X-ray data to define cool-core and disturbed subsamples of clusters, and we constrain the average pressure profiles of each of these subsamples. We find that given the precision of our data the average pressure profiles of disturbed and cool-core clusters are consistent with one another at R>~0.15R500, with cool-core systems showing indications of higher pressure at R<~0.15R500. In addition, for the first time, we place simultaneous constraints on the mass scaling of cluster pressure profiles, their ensemble mean profile, and their radius-dependent intrinsic scatter between 0.1R500 and 2.0R500. The scatter among profiles is minimized at radii between ~0.2R500 and ~0.5R500, with a value of ~20%. The best-fit mass scaling has a power-law slope of 0.49, which is shallower than the nominal prediction of 2/3 from self-similar hydrostatic equilibrium models. These results for the intrinsic scatter and mass scaling are largely consistent with previous analyses, most of which have relied heavily on X-ray derived pressures of clusters at significantly lower masses and redshifts compared to our sample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا