ترغب بنشر مسار تعليمي؟ اضغط هنا

Metal Enrichment of the Intra-Cluster Medium: Ram-Pressure Stripping of Cluster Galaxies

260   0   0.0 ( 0 )
 نشر من قبل Wilfried Domainko
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف W. Domainko




اسأل ChatGPT حول البحث

We present numerical simulations of the dynamical and chemical evolution of galaxy clusters. X-ray spectra show that the intra-cluster medium contains a significant amount of metals. As heavy elements are produced in the stars of galaxies material from the galaxies must have been expelled to enrich the ambient medium. We have performed hydrodynamic simulations investigating various processes. In this presentation we show the feedback from gas which is stripped from galaxies by ram-pressure stripping. The efficiency, resulting spatial distribution of the metals and the time dependency of this enrichment process on galaxy cluster scale is shown.



قيم البحث

اقرأ أيضاً

We present numerical simulations of galaxy clusters which include interaction processes between the galaxies and the intra-cluster gas. The considered interaction processes are galactic winds and ram-pressure stripping, which both transfer metal-enri ched interstellar medium into the intra-cluster gas and hence increase its metallicity. We investigate the efficiency and time evolution of the interaction processes by simulated metallicity maps, which are directly comparable to those obtained from X-ray observations. We find that ram-pressure stripping is more efficient than quiet (i.e. non-starburst driven) galactic winds in the redshift interval between 1 and 0. The expelled metals are not mixed immediately with the intra-cluster gas, but inhomogeneities are visible in the metallicity maps. Even stripes of higher metallicity that a single galaxy has left behind can be seen. The spatial distribution of the metals transported by ram-pressure stripping and by galactic winds are very different for massive clusters: the former process yields a centrally concentrated metal distribution while the latter results in an extended metal distribution.
We report the detection of H$alpha$ trails behind three new intermediate-mass irregular galaxies in the NW outskirts of the nearby cluster of galaxies Abell 1656 (Coma). Hints that these galaxies possess an extended component were found in earlier, d eeper H$alpha$ observations carried out with the Subaru telescope. However the lack of a simultaneous $r$-band exposure, together with the presence of strong stellar ghosts in the Subaru images, prevented us from quantifying the detections. We therefore devoted one full night of H$alpha$ observation to each of the three galaxies using the San Pedro Martir 2.1m telescope. One-sided tails of H$alpha$ emission of 10-20 kpc projected size were detected, suggesting an ongoing ram pressure stripping event. We added these 3 new sources of extended ionized gas (EIG) added to the 12 found by Yagi et al. (2010), NGC 4848 (Fossati et al. 2012), and NGC 4921 whose ram pressure stripping is certified by HI asymmetry. This brings the number sources with H$alpha$ trails to 17 gaseous tails out of 27 (63 %) late-type galaxies (LTG) galaxies members of the Coma cluster with direct evidence of ram pressure stripping. The 27 LTG galaxies, among these the 17 with extended H$alpha$ tails, have kinematic properties that are different from the rest of the early-type galaxy (ETG) population of the c ore of the Coma cluster, as they deviate in the phase-space diagram $Delta$V/$sigma$ versus $r/R_{200}$.
We study galaxies undergoing ram pressure stripping in the Virgo cluster to examine whether we can identify any discernible trend in their star formation activity. We first use 48 galaxies undergoing different stages of stripping based on HI morpholo gy, HI deficiency, and relative extent to the stellar disk, from the VIVA survey. We then employ a new scheme for galaxy classification which combines HI mass fractions and locations in projected phase space, resulting in a new sample of 365 galaxies. We utilize a variety of star formation tracers, which include g - r, WISE [3.4] - [12] colors, and starburstiness that are defined by stellar mass and star formation rates to compare the star formation activity of galaxies at different stripping stages. We find no clear evidence for enhancement in the integrated star formation activity of galaxies undergoing early to active stripping. We are instead able to capture the overall quenching of star formation activity with increasing degree of ram pressure stripping, in agreement with previous studies. Our results suggest that if there is any ram pressure stripping induced enhancement, it is at best locally modest, and galaxies undergoing enhancement make up a small fraction of the total sample. Our results also indicate that it is possible to trace galaxies at different stages of stripping with the combination of HI gas content and location in projected phase space, which can be extended to other galaxy clusters that lack high-resolution HI imaging.
114 - M. Brueggen 2007
Ram pressure stripping can remove significant amounts of gas from galaxies that orbit in clusters and massive groups, and thus has a large impact on the evolution of cluster galaxies. In this paper, we reconstruct the present-day distribution of ram- pressure, and the ram pressure histories of cluster galaxies. To this aim, we combine the Millennium Simulation and an associated semi-analytic model of galaxy evolution with analytic models for the gas distribution in clusters. We find that about one quarter of galaxies in massive clusters are subject to strong ram-pressures that are likely to cause an expedient loss of all gas. Strong ram-pressures occur predominantly in the inner core of the cluster, where both the gas density and the galaxy velocity are higher. Since their accretion onto a massive system, more than 64 per cent of galaxies that reside in a cluster today have experienced strong ram-pressures of $>10^{-11}$ dyn cm$^{-2}$ which most likely led to a substantial loss of the gas.
140 - P. Jachym , J. Koppen , J. Palous 2009
Ram pressure stripping of galaxies in clusters can yield gas deficient disks. Previous numerical simulations based on various approaches suggested that, except for near edge-on disk orientations, the amount of stripping depends very little on the inc lination angle. Following our previous study of face-on stripping, we extend the set of parameters with the disk tilt angle and explore in detail the effects of the ram pressure on the interstellar content (ISM) of tilted galaxies that orbit in various environments of clusters, with compact or extended distributions of the intra-cluster medium (ICM). We further study how results of numerical simulations could be estimated analytically. A grid of numerical simulations with varying parameters is produced using the tree/SPH code GADGET with a modified method for calculating the ISM-ICM interaction. These SPH calculations extend the set of existing results obtained from different codes using various numerical techniques. The simulations confirm the general trend of less stripping at orientations close to edge-on. The dependence on the disk tilt angle is more pronounced for compact ICM distributions, however it almost vanishes for strong ram pressure pulses. Although various hydrodynamical effects are present in the ISM-ICM interaction, the main quantitative stripping results appear to be roughly consistent with a simple scenario of momentum transfer from the encountered ICM. This behavior can also be found in previous simulations. To reproduce the numerical results we propose a fitting formula depending on the disk tilt angle and on the column density of the encountered ICM. Such a dependence is superior to that on the peak ram pressure used in previous simple estimates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا