ﻻ يوجد ملخص باللغة العربية
We calculate the meteorology of the close-in transiting extrasolar planet HD 209458b using a global, three-dimensional atmospheric circulation model. Dynamics are driven by perpetual irradiation of one hemisphere of this tidally locked planet. The simulation predicts global temperature contrasts of ~500 K at the photosphere and the development of a steady superrotating jet. The jet extends from the equator to mid-latitudes and from the top model layer at 1 mbar down to 10 bars at the base of the heated region. Wind velocities near the equator exceed 4 km/s at 300 mbar. The hottest regions of the atmosphere are blown downstream from the substellar point by 60 degrees of longitude. We predict from these results a factor of ~2 ratio between the maximum and minimum observed radiation from the planet over a full orbital period, with peak infrared emission preceding the time of the secondary eclipse by ~14 hours.
We present the first three-dimensional magnetohydrodynamic (MHD) simulations of the atmosphere of HD 209458b which self-consistently include reduction of winds due to the Lorentz force and Ohmic heating. We find overall wind structures similar to tha
We derive improved system parameters for the HD 209458 system using a model that simultaneously fits both photometric transit and radial velocity observations. The photometry consists of previous Hubble Space Telescope STIS and FGS observations, twel
We report the spectroscopic detection of mid-infrared emission from the transiting exoplanet HD 209458b. Using archive data taken with the Spitzer/IRS instrument, we have determined the spectrum of HD 209458b between 7.46 and 15.25 microns. We have u
Atomic hydrogen loss at the top of HD 209458bs atmosphere has been recently detected Vidal-Madjar et al. 2003. We have developed a 1-dimensional model to study the chemistry in the upper atmosphere of this extrasolar hot jupiter. The 3 most abundant
Here we present the analysis of multi-epoch secondary eclipse observations of HD 189733b and HD 209458b as a probe of temporal variability in the planetary climate using both Spitzer channels 1 and 2 (3.6 and 4.5 um). Constraining temporal variabilit