ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetohydrodynamic Simulations of the Atmosphere of HD 209458b

206   0   0.0 ( 0 )
 نشر من قبل Tamara Rogers
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first three-dimensional magnetohydrodynamic (MHD) simulations of the atmosphere of HD 209458b which self-consistently include reduction of winds due to the Lorentz force and Ohmic heating. We find overall wind structures similar to that seen in previous models of hot Jupiter atmospheres, with strong equatorial jets and meridional flows poleward near the day side and equatorward near the night side. Inclusion of magnetic fields slows those winds and leads to Ohmic dissipation. We find wind slowing ranging from 10%-40% for reasonable field strengths. We find Ohmic dissipation rates ~10^17 W at 100 bar, orders of magnitude too small to explain the inflated radius of this planet. Faster wind speeds, not achievable in these anelastic calculations, may be able to increase this value somewhat, but likely will not be able to close the gap necessary to explain the inflated radius. We demonstrate that the discrepancy between the simulations presented here and previous models is due to inadequate treatment of magnetic field geometry and evolution. Induced poloidal fields become much larger than those imposed, highlighting the need for a self-consistent MHD treatment of these hot atmospheres.



قيم البحث

اقرأ أيضاً

Atomic hydrogen loss at the top of HD 209458bs atmosphere has been recently detected Vidal-Madjar et al. 2003. We have developed a 1-dimensional model to study the chemistry in the upper atmosphere of this extrasolar hot jupiter. The 3 most abundant elements (other than He), as well as 4 parent molecules are included in this model, viz., H, C, O, H2, CO, H2O, and CH4. The higher temperatures (~ 1000 K) and higher stellar irradiance (~6x10^5 W m^{-2}) strongly enhance and modify the chemical reaction rates in this atmosphere. Our two main results are that (a) the production of atomic hydrogen in the atmosphere is mainly driven by H2O photolysis and reaction of OH with H2, and is not sensitive to the exact abundances of CO, H2O, and CH4, and (b) H2O and CH4 can be produced via the photolysis of CO followed by the reactions with H2.
Here we present the analysis of multi-epoch secondary eclipse observations of HD 189733b and HD 209458b as a probe of temporal variability in the planetary climate using both Spitzer channels 1 and 2 (3.6 and 4.5 um). Constraining temporal variabilit y will inform models and identify physical processes occurring at either length scales too small to directly observe or at pressure levels that are inaccessible to transit observations. We do not detect statistically significant variability and are able to place useful upper limits on the IR variability amplitudes in these atmospheres. There are very few planets with multi-epoch observations at the required precision to probe variability in dayside emission. The observations considered in this study span several years, providing insight into temporal variability at multiple timescales. In the case of HD 189733b, the best fit eclipse depths for the channel 2 observations exhibit a scatter of 102 ppm about a median depth of 1827 ppm and in channel 1 exhibit a scatter of 88 ppm about a median depth of 1481 ppm. For HD 209458b, the best fit eclipse depths for the channel 2 observations exhibit a scatter of 22 ppm about a median depth of 1406 ppm and in channel 1 exhibit a scatter of 131 ppm about a median depth of 1092 ppm. The precision and scatter in these observations allow us to constrain variability to less than (5.6% and 6.0%) and (12% and 1.6%) for channels (1,2) of HD 189733b and HD 209458b respectively. There is a difference in the best fit eclipse timing compared to the predicted time consistent with an offset hotspot as predicted by GCMs and confirmed in previous phase curve observations.
The hot Jupiter HD 209458b is particularly amenable to detailed study as it is among the brightest transiting exoplanet systems currently known (V-mag = 7.65; K-mag = 6.308) and has a large planet-to-star contrast ratio. HD 209458b is predicted to be in synchronous rotation about its host star with a hot spot that is shifted eastward of the substellar point by superrotating equatorial winds. Here we present the first full-orbit observations of HD 209458b, in which its 4.5 $mu$m emission was recorded with $Spitzer$/IRAC. Our study revises the previous 4.5 $mu$m measurement of HD 209458bs secondary eclipse emission downward by $sim$35% to $0.1391%^{+0.0072%}_{-0.0069%}$, changing our interpretation of the properties of its dayside atmosphere. We find that the hot spot on the planets dayside is shifted eastward of the substellar point by $40.9^{circ}pm{6.0^{circ}}$, in agreement with circulation models predicting equatorial superrotation. HD 209458bs dayside (T$_{bright}$ = 1499 $pm$ 15 K) and nightside (T$_{bright}$ = 972 $pm$ 44 K) emission indicates a day-to-night brightness temperature contrast smaller than that observed for more highly irradiated exoplanets, suggesting that the day-to-night temperature contrast may be partially a function of the incident stellar radiation. The observed phase curve shape deviates modestly from global circulation model predictions potentially due to disequilibrium chemistry or deficiencies in the current hot CH$_{4}$ line lists used in these models. Observations of the phase curve at additional wavelengths are needed in order to determine the possible presence and spatial extent of a dayside temperature inversion, as well as to improve our overall understanding of this planets atmospheric circulation.
159 - M. Swain , G. Tinetti , G. Vasisht 2009
Using the NICMOS instrument on the Hubble Space Telescope, we have measured the dayside spectrum of HD 209458b between 1.5--2.5 microns. The emergent spectrum is dominated by features due to the presence of methane (CH4) and water vapor (H2O), with s maller contributions from carbon dioxide (CO2). Combining this near-infrared spectrum with existing mid-infrared measurements shows the existence of a temperature inversion and confirms the interpretation of previous photometry measurements. We find a family of plausible solutions for the molecular abundance and detailed temperature profile. Observationally resolving the ambiguity between abundance and temperature requires either (1) improved wavelength coverage or spectral resolution of the dayside emission spectrum, or (2) a transmission spectrum where abundance determinations are less sensitive to the temperature structure.
The absorption of stellar radiation observed by the HD209458b in resonant lines of OI and CII has not yet been satisfactorily modeled. In our previous 2D simulations we have shown that the hydrogen-dominated upper atmosphere of HD209458b, heated by X UV radiation, expands supersonically beyond the Roche lobe and drags the heavier species along with it. Assuming solar abundances, OI and CII particles accelerated by tidal forces to velocities up to 50 km/s should produce the absorption due to Doppler resonance mechanism at the level of 6-10%, consistent with the observations. Since the 2D geometry does not take into account the Coriolis force in the planet reference frame, the question remained to which extent the spiraling of the escaping planetary material and its actually achieved velocity may influence the conclusions made on the basis of 2D modeling. In the present paper we apply for the first time in the study of HD209458b a global 3D hydrodynamic multi-fluid model that self-consistently describes the formation and expansion of the escaping planetary wind, affected by the tidal and Coriolis forces, as well as by the surrounding stellar wind. The modeling results confirm our previous findings that the velocity and density of the planetary flow are sufficiently high to produce the absorption in HI, OI, and CII resonant lines at the level close to the in-transit observed values. The novel finding is that the matching of the absorption measured in MgII and SiIII lines requires at least 10 times lower abundances of these elements than the Solar system values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا