ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust properties along anomalous extinction sightlines. II. Studying extinction curves with dust models

154   0   0.0 ( 0 )
 نشر من قبل Paola Mazzei
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The large majority of extinction sight lines in our Galaxy obey a simple relation depending on one parameter, the total-to-selective extinction coefficient, Rv. Different values of Rv are able to match the whole extinction curve through different environments so characterizing normal extinction curves. In this paper more than sixty curves with large ultraviolet deviations from their best-fit one parameter curve are analyzed. These curves are fitted with dust models to shed light into the properties of the grains, the processes affecting them, and their relations with the environmental characteristics. The extinction curve models are reckoned by following recent prescriptions on grain size distributions able to describe one parameter curves for Rv values from 3.1 to 5.5. Such models, here extended down to Rv=2.0, allow us to compare the resulting properties of our deviating curves with the same as normal curves in a self-consistent framework, and thus to recover the relative trends overcoming the modeling uncertainties. Such curves represent the larger and homogeneous sample of anomalous curves studied so far with dust models. Results show that the ultraviolet deviations are driven by a larger amount of small grains than predicted for lines of sight where extinction depends on one parameter only. Moreover, the dust-to-gas ratios of anomalous curves are lower than the same values for no deviating lines of sight. Shocks and grain-grain collisions should both destroy dust grains, so reducing the amount of the dust trapped into the grains, and modify the size distribution of the dust, so increasing the small-to-large grain size ratio. Therefore, the extinction properties derived should arise along sight lines where shocks and high velocity flows perturb the physical state of the interstellar medium living their signature on the dust properties. (Abridged version)



قيم البحث

اقرأ أيضاً

Highly reddened type Ia Supernovae (SNe Ia) with low total-to-selective visual extinction ratio values, $R_V$, also show peculiar linear polarization wavelength dependencies with peak polarizations at short wavelengths ($lambda_{max} lesssim 0.4 mu m $). It is not clear why sightlines to SNe Ia display such different continuum polarization profiles from interstellar sightlines in the Milky Way with similar $R_V$ values. We investigate polarization profiles of a sample of Galactic stars with low $R_V$ values, along anomalous extinction sightlines, with the aim to find similarities to the polarization profiles that we observe in SN Ia sightlines. We undertook spectropolarimetry of 14 stars, and used archival data for three additional stars, and run dust extinction and polarization simulations to infer a simple dust model that can reproduce the observed extinction and polarization curves. Our sample of Galactic stars with low $R_V$ values and anomalous extinction sightlines displays normal polarization profiles with an average $lambda_{max} sim 0.53 {mu m}$, and is consistent within 3$sigma$ to a larger coherent sample of Galactic stars from literature. Despite the low $R_V$ values of dust towards the stars in our sample, the polarization curves do not show any similarity to the continuum polarization curves observed towards SNe Ia with low $R_V$ values. There is a correlation between the best-fit Serkowski parameters $K$ and $lambda_{max}$, but we did not find any significant correlation between $R_V$ and $lambda_{max}$. Our simulations show that the $K-lambda_{max}$ relationship is an intrinsic property of polarization. Furthermore, we have shown that in order to reproduce polarization curves with normal $lambda_{max}$ and low $R_V$ values, a population of large (a $geq 0.1 mu m$) interstellar silicate grains must be contained in the dusts composition.
Interstellar dust plays a central role in shaping the detailed structure of the interstellar medium, thus strongly influencing star formation and galaxy evolution. Dust extinction provides one of the main pillars of our understanding of interstellar dust while also often being one of the limiting factors when interpreting observations of distant objects, including resolved and unresolved galaxies. The ultraviolet (UV) and mid-infrared (MIR) wavelength regimes exhibit features of the main components of dust, carbonaceous and silicate materials, and therefore provide the most fruitful avenue for detailed extinction curve studies. Our current picture of extinction curves is strongly biased to nearby regions in the Milky Way. The small number of UV extinction curves measured in the Local Group (mainly Magellanic Clouds) clearly indicates that the range of dust properties is significantly broader than those inferred from the UV extinction characteristics of local regions of the Milky Way. Obtaining statistically significant samples of UV and MIR extinction measurements for all the dusty Local Group galaxies will provide, for the first time, a basis for understanding dust grains over a wide range of environments. Obtaining such observations requires sensitive medium-band UV, blue-optical, and mid-IR imaging and followup R ~ 1000 spectroscopy of thousands of sources. Such a census will revolutionize our understanding of the dependence of dust properties on local environment providing both an empirical description of the effects of dust on observations as well as strong constraints on dust grain and evolution models.
New low-resolution UV spectra of a sample of reddened OB stars in M31 were obtained with HST/STIS to study the wavelength dependence of interstellar extinction and the nature of the underlying dust grain populations. Extinction curves were constructe d for four reddened sightlines in M31 paired with closely matching stellar atmosphere models. The new curves have a much higher S/N than previous studies. Direct measurements of N(H I) were made using the Ly$alpha$ absorption lines enabling gas-to-dust ratios to be calculated. The sightlines have a range in galactocentric distance of 5 to 14 kpc and represent dust from regions of different metallicities and gas-to-dust ratios. The metallicities sampled range from Solar to 1.5 Solar. The measured curves show similarity to those seen in the Milky Way and the Large Magellanic Cloud. The Maximum Entropy Method was used to investigate the dust composition and size distribution for the sightlines observed in this program finding that the extinction curves can be produced with the available carbon and silicon abundances if the metallicity is super-Solar.
201 - R. Siebenmorgen 2017
We present polarisation spectra of seven stars in the lines-of-sight towards the Sco OB1 association. Our spectra were obtained within the framework of the Large Interstellar Polarization Survey carried out with the FORS instrument of the ESO VLT. We have modelled the wavelength-dependence of extinction and linear polarisation with a dust model for the diffuse interstellar medium which consists of a mixture of particles with size ranging from the molecular domain of 0.5 nm up to 350 nm. We have included stochastically heated small dust grains with radii between 0.5 and 6 nm made of graphite and silicate, as well as polycyclic aromatic hydrocarbon molecules (PAHs), and we have assumed that larger particles are prolate spheroids made of amorphous carbon and silicate. Overall, a dust model with eight free parameters best reproduces the observations. Reducing the number of free parameters leads to results that are inconsistent with cosmic abundance constraints. We found that aligned silicates are the dominant contributor to the observed polarisation, and that the polarisation spectra are best-fit by a lower limit of the equivolume sphere radius of aligned grains of 70 - 200nm.
We investigate the UV continuum slope $alpha$ of a large quasar sample from SDSS DR7. By using specific continuum windows, we build two samples at lower ($0.71<z<1.19$) and higher ($1.90<z<3.15$) redshifts, which correspond to the continuum slopes at longer (NUV) and shorter (FUV) rest wavelength ranges respectively. Overall, the average continuum slopes are $-0.36$ and $-0.51$ for $alpha_{rm NUV}$ and $alpha_{rm FUV}$ with similar dispersions $sigma_{alpha} sim 0.5$. For both samples, we confirm the luminosity dependence of the continuum slope, i.e., fainter quasars have redder spectra. We further find that both $alpha_{rm NUV}$ and $alpha_{rm FUV}$ have a common upper limit ($sim 1/3$) which is almost independent of the quasar luminosity $L_{rm bol}$. This finding implies that the intrinsic quasar continuum (or the bluest quasar), at any luminosity, obey the standard thin disk model. We propose that the other quasars with redder $alpha$ are caused by the reddening from the dust {it locally}. With this assumption, we employ the dust extinction scenario to model the observed $L_{rm bol}-alpha$ relation. We find that, a typical value of $E(B-V)sim0.1$ to $0.3$ mag (depending on the types of extinction curve) of the quasar {it local} dust is enough to explain the discrepancy of $alpha$ between the observation ($sim-0.5$) and the standard accretion disk model prediction ($sim 1/3$).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا