ترغب بنشر مسار تعليمي؟ اضغط هنا

First Results from the CHARA Array. I. An Interferometric and Spectroscopic Study of the Fast Rotator alpha Leonis (Regulus)

203   0   0.0 ( 0 )
 نشر من قبل Harold McAlister
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on K-band interferometric observations of the bright, rapidly rotating star Regulus (type B7 V) made with the CHARA Array on Mount Wilson, California. Through a combination of interferometric and spectroscopic measurements, we have determined for Regulus the equatorial and polar diameters and temperatures, the rotational velocity and period, the inclination and position angle of the spin axis, and the gravity darkening coefficient. These first results from the CHARA Array provide the first interferometric measurement of gravity darkening in a rapidly rotating star and represent the first detection of gravity darkening in a star that is not a member of an eclipsing binary system.



قيم البحث

اقرأ أيضاً

We analyse interferometric data obtained for Regulus with AMBER (Astronomical Multi- BEam combineR) at high spectral resolution ($lambda/deltalambda approx 12000$) across the Br$gamma$ spectral line. The study of the photocentre displacement allows u s to constrain a large number of stellar parameters -- equatorial radius $R_{rm eq}$, equatorial velocity $V_{rm eq}$, inclination $i$, rotation-axis position angle $PA_{rm rot}$, and flattening -- with an estimation of gravity-darkening coefficient $beta$ using previously published theoretical results. We use the Simulation Code of Interferometric-observations for ROtators and CirCumstellar Objects (SCIROCCO), a semi-analytical algorithm dedicated to fast rotators. We chose Regulus because it is a very well-known edge-on star, for which an alternative approach is needed to check the previously published results. Our analysis showed that a significant degeneracy of solution is present. By confronting the results obtained by differential interferometry with those obtained by conventional long-base interferometry, we obtain similar results (within the uncertainties), thereby validating our approach, where $V_{eq}$ and $i$ are found separately. From the photocentre displacement, we can independently deduce $PA_{rot}$. We use two minimization methods to restrict observed stellar parameters via a fast rotator model: a non-stochastic method ($chi^2$ fit) and a stochastic one (Markov Chain Monte Carlo method), in order to check whether the correct global minimum is achieved particularly with respect to the degeneracies of the gravity darkening parameter $beta$, where we demonstrate, using a quantitative analysis of parameters, that the estimate of $beta$ is easier for stars with an inclination angle of around $45^circ$.
We present the visual orbit of the double-lined spectroscopic binary HD 224355 from interferometric observations with the CHARA Array, as well as an updated spectroscopic analysis using echelle spectra from the Apache Point Observatory 3.5m telescope . By combining the visual and spectroscopic orbital solutions, we find the binary components to have masses of M1 = 1.626 +/- 0.005 Msun and M2 = 1.608 +/- 0.005 Msun, and a distance of d = 63.98 +/- 0.26 pc. Using the distance and the component angular diameters found by fitting spectrophotometry from the literature to spectral energy distribution models, we estimate the stellar radii to be R1 = 2.65 +/- 0.21 Rsun and R2 = 2.47 +/- 0.23 Rsun. We then compare these observed fundamental parameters to the predictions of stellar evolution models, finding that both components are evolved towards the end of the main sequence with an estimated age of 1.9 Gyr.
The Very Small Array (VSA) is a synthesis telescope designed to image faint structures in the cosmic microwave background on degree and sub-degree angular scales. The VSA has key differences from other CMB interferometers with the result that differe nt systematic errors are expected. We have tested the operation of the VSA with a variety of blank-field and calibrator observations and cross-checked its calibration scale against independent measurements. We find that systematic effects can be suppressed below the thermal noise level in long observations; the overall calibration accuracy of the flux density scale is 3.5 percent and is limited by the external absolute calibration scale.
191 - X. Che , J. D. Monnier , M. Zhao 2011
Near-infrared interferometers have recently imaged a number of rapidly rotating A-type stars, finding levels of gravity darkening inconsistent with theoretical expectations. Here, we present new imaging of both a cooler star {beta} Cas (F2IV) and a h otter one {alpha} Leo (B7V) using the CHARA array and the MIRC instrument at the H band. Adopting a solid-body rotation model with a simple gravity darkening prescription, we modeled the stellar geometric properties and surface temperature distributions, confirming both stars are rapidly rotating and show gravity darkening anomalies. We estimate the masses and ages of these rapid rotators on L-Rpol and HR diagrams constructed for non-rotating stars by tracking their non-rotating equivalents. The unexpected fast rotation of the evolved subgiant {beta} Cas offers a unique test of the stellar core-envelope coupling, revealing quite efficient coupling over the past ~ 0.5 Gyr. Lastly we summarize all our interferometric determinations of the gravity darkening coefficient for rapid rotators, finding none match the expectations from the widely used von Zeipel gravity darkening laws. Since the conditions of the von Zeipel law are known to be violated for rapidly rotating stars, we recommend using the empirically-derived {beta} = 0.19 for such stars with radiation-dominated envelopes. Furthermore, we note that no paradigm exists for self-consistently modeling heavily gravity-darkened stars that show hot radiative poles with cool convective equators.
Binary post-AGB stars are interesting laboratories to study both the evolution of binaries as well as the structure of circumstellar disks. A multiwavelength high angular resolution study of the prototypical object 89 Herculis is performed with the a im of identifying and locating the different emission components seen in the SED. A large interferometric data set, collected over the past decade and covering optical and near-IR wavelengths, is analyzed with simple geometric models. Combining the interferometric constraints with the photometry and the optical spectra, we reassess the energy budget of the post-AGB star and its circumstellar environment. We report the first (direct) detection of a large (35-40%) optical circumstellar flux contribution and spatially resolve its emission region. Given this large amount of reprocessed and/or redistributed optical light, the fitted size of the emission region is rather compact and fits with(in) the inner rim of the circumbinary dust disk. This rim dominates our K band data through thermal emission and is rather compact, emitting significantly already at a radius of twice the orbital separation. We interpret the circumstellar optical flux as due to a scattering process, with the scatterers located in the extremely puffed-up inner rim of the disk and possibly also in a bipolar outflow seen pole-on. A non-LTE gaseous origin in an inner disk cannot be excluded but is considered highly unlikely. This direct detection of a significant amount of circumbinary light at optical wavelengths poses several significant questions regarding our understanding of both post-AGB binaries and the physics in their circumbinary disks. Although the identification of the source of emission/scattering remains inconclusive without further study on this and similar objects, the implications are manifold.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا