ﻻ يوجد ملخص باللغة العربية
Near-infrared interferometers have recently imaged a number of rapidly rotating A-type stars, finding levels of gravity darkening inconsistent with theoretical expectations. Here, we present new imaging of both a cooler star {beta} Cas (F2IV) and a hotter one {alpha} Leo (B7V) using the CHARA array and the MIRC instrument at the H band. Adopting a solid-body rotation model with a simple gravity darkening prescription, we modeled the stellar geometric properties and surface temperature distributions, confirming both stars are rapidly rotating and show gravity darkening anomalies. We estimate the masses and ages of these rapid rotators on L-Rpol and HR diagrams constructed for non-rotating stars by tracking their non-rotating equivalents. The unexpected fast rotation of the evolved subgiant {beta} Cas offers a unique test of the stellar core-envelope coupling, revealing quite efficient coupling over the past ~ 0.5 Gyr. Lastly we summarize all our interferometric determinations of the gravity darkening coefficient for rapid rotators, finding none match the expectations from the widely used von Zeipel gravity darkening laws. Since the conditions of the von Zeipel law are known to be violated for rapidly rotating stars, we recommend using the empirically-derived {beta} = 0.19 for such stars with radiation-dominated envelopes. Furthermore, we note that no paradigm exists for self-consistently modeling heavily gravity-darkened stars that show hot radiative poles with cool convective equators.
V1022 Cas has been known as a spectroscopic binary for a century. It was found to be eclipsing based on photometry from the Hipparcos satellite, and an astrometric orbit was recently obtained from near-infrared interferometry. We present the first hi
Auns. The aim of our paper is to investigate the low-amplitude and long-period variations in evolved stars with a precise radial velocity (RV) survey. Methods. The high-resolution, the fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) was u
We combine nulling interferometry at 10 {mu}m using the MMT and Keck Telescopes with spectroscopy, imaging, and photometry from 3 to 100 {mu}m using Spitzer to study the debris disk around {beta} Leo over a broad range of spatial scales, correspondin
We report on K-band interferometric observations of the bright, rapidly rotating star Regulus (type B7 V) made with the CHARA Array on Mount Wilson, California. Through a combination of interferometric and spectroscopic measurements, we have determin
Optical interferometry is a powerful tool to investigate the close environment of AGB stars. With a spatial resolution of a few milli-arcseconds, it is even possible to image directly the surface of angularly large objects. This is of special interes