ﻻ يوجد ملخص باللغة العربية
We analyse interferometric data obtained for Regulus with AMBER (Astronomical Multi- BEam combineR) at high spectral resolution ($lambda/deltalambda approx 12000$) across the Br$gamma$ spectral line. The study of the photocentre displacement allows us to constrain a large number of stellar parameters -- equatorial radius $R_{rm eq}$, equatorial velocity $V_{rm eq}$, inclination $i$, rotation-axis position angle $PA_{rm rot}$, and flattening -- with an estimation of gravity-darkening coefficient $beta$ using previously published theoretical results. We use the Simulation Code of Interferometric-observations for ROtators and CirCumstellar Objects (SCIROCCO), a semi-analytical algorithm dedicated to fast rotators. We chose Regulus because it is a very well-known edge-on star, for which an alternative approach is needed to check the previously published results. Our analysis showed that a significant degeneracy of solution is present. By confronting the results obtained by differential interferometry with those obtained by conventional long-base interferometry, we obtain similar results (within the uncertainties), thereby validating our approach, where $V_{eq}$ and $i$ are found separately. From the photocentre displacement, we can independently deduce $PA_{rot}$. We use two minimization methods to restrict observed stellar parameters via a fast rotator model: a non-stochastic method ($chi^2$ fit) and a stochastic one (Markov Chain Monte Carlo method), in order to check whether the correct global minimum is achieved particularly with respect to the degeneracies of the gravity darkening parameter $beta$, where we demonstrate, using a quantitative analysis of parameters, that the estimate of $beta$ is easier for stars with an inclination angle of around $45^circ$.
We investigate signatures of magnetic fields and activity at the surface and in the prominence system of the ultra-rapid rotator V530 Per, a G-type solar-like member of the young open cluster $alpha$~Persei. This object has a rotation period shorter
No eclipse has been found in 15 days of almost continuous photometry of Alpha Leo with accuracy of about 0.0005 mag.
The rapidly rotating primary component of Regulus A system has been observed, for the first time, using the technique of differential interferometry at high spectral resolution. The observations have been performed across the Br$_gamma$ spectral line
Mass transfer in an interacting binary will often strip the mass donor of its entire envelope and spin up the mass gainer to near critical rotation. The nearby B-type star Regulus represents a binary in the post-mass transfer stage: it is a rapid rot
We report a multisite photometric campaign for the Beta Cep stars V2052 Oph and V986 Oph. 670 hours of high-quality differential photoelectric Stromgren, Johnson and Geneva time-series photometry were obtained with eight telescopes on five continents