ترغب بنشر مسار تعليمي؟ اضغط هنا

Carbon Monoxide in low-mass dwarf stars

62   0   0.0 ( 0 )
 نشر من قبل Hugh R. A. Jones
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compare high resolution infrared observations of the CO 3-1 bands in the 2.297-2.310 micron region of M dwarfs and one L dwarf with theoretical expectations. We find a good match between the observational and synthetic spectra throughout the 2000-3500K temperature regime investigated. Nonetheless, for the 2500-3500 K temperature range the temperatures that we derive from synthetic spectral fits are higher than expected from more empirical methods by several hundred K. In order to reconcile our findings with the empirical temperature scale it is necessary to invoke warming of the model atmosphere used to construct the synthetic spectra. We consider that the most likely reason for the back-warming is missing high temperature opacity due to water vapour. We compare the water vapour opacity of the Partridge & Schwenke (1997) line list used for the model atmosphere with the output from a preliminary calculation by Barber & Tennyson (2004). While the Partridge & Schwenke line list is a reasonable spectroscopic match for the new line list at 2000 K, by 4000 K it is missing around 25% of the water vapour opacity. We thus consider that the offset between empirical and synthetic temperature scales is explained by the lack of hot water vapour used for computation of the synthetic spectra. For our coolest objects with temperatures below 2500 K we find best fits when using synthetic spectra which include dust emission. Our spectra also allow us to constrain the rotational velocities of our sources, and these velocities are consistent with the broad trend of rotational velocities increasing from M to L.

قيم البحث

اقرأ أيضاً

We compare the observational and theoretical spectra of the $Delta v$ = 2 CO bands in a range of M dwarfs. We investigate the dependence of theoretical spectra on effective temperatures as well as carbon abundance. In general we find that the synthet ic CO bands fit the observed data extremely well and are excellent diagnostics. In particular the synthetic spectra reasonably match observations and the best fit temperatures are similar to those found by empirical methods. We also examine the CDC isotopic ratio. We find that fundamental $^{13}$CO bands around 2.345 and 2.375 $mu$m are good discriminators for the CDC ratio in M dwarfs. The 2.375 $mu$m is more useful because it doesnt suffer such serious contamination by water vapour transitions. Our current dataset does not quite have the wavelength coverage to perform a reliable determination of the CDC ratio in M dwarfs. For this we recommend observing the region 2.31--2.40 $mu$m at a resolution of better than 1000. Alternatively the observational problems of contamination by water vapour at 2.345 $mu$m maybe solved by observing at resolutions of around 50000. We also investigated the possibility of using the $Delta v$ = 1 CO bands around 4.5 $mu$m. We find that the contamination due to water vapour is even more of a problem at these wavelengths.
Parallaxes are presented for a sample of 20 nearby dwarf carbon stars. The inferred luminosities cover almost two orders of magnitude. Their absolute magnitudes and tangential velocities confirm prior expectations that some originate in the Galactic disk, although more than half of this sample are halo stars. Three stars are found to be astrometric binaries, and orbital elements are determined; their semimajor axes are 1 -- 3 AU, consistent with the size of an AGB mass-transfer donor star.
Laser pulses with stable electric field waveforms establish the opportunity to achieve coherent control on attosecond timescales. We present experimental and theoretical results on the steering of electronic motion in a multi-electron system. A very high degree of light-waveform control over the directional emission of C+ and O+ fragments from the dissociative ionization of CO was observed. Ab initio based model calculations reveal contributions to the control related to the ionization and laser-induced population transfer between excited electronic states of CO+ during dissociation.
We report the likely detection of near-infrared 2.29 $mu$m first overtone Carbon Monoxide (CO) emission from the young supernova remnant Cassiopeia A (Cas A). The continuum-subtracted CO filter map reveals CO knots within the ejecta-rich reverse shoc k. We compare the first overtone CO emission with that found in the well-studied supernova, SN 1987A and find $sim$30 times less CO in Cas A. The presence of CO suggests that molecule mixing is small in the SN ejecta and that astrochemical processes and molecule formation may continue at least ~300 years after the initial explosion.
79 - Yong Shi 2016
Extremely metal-poor galaxies with metallicity below 10% of the solar value in the local universe are the best analogues to investigating the interstellar medium at a quasi-primitive environment in the early universe. In spite of the ongoing formatio n of stars in these galaxies, the presence of molecular gas (which is known to provide the material reservoir for star formation in galaxies, such as our Milky Way) remains unclear. Here, we report the detection of carbon monoxide (CO), the primary tracer of molecular gas, in a galaxy with 7% solar metallicity, with additional detections in two galaxies at higher metallicities. Such detections offer direct evidence for the existence of molecular gas in these galaxies that contain few metals. Using archived infrared data, it is shown that the molecular gas mass per CO luminosity at extremely low metallicity is approximately one-thousand times the Milky Way value.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا