ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards the Event Horizon - The Vicinity of AGN at Micro-Arcsecond Resolution

88   0   0.0 ( 0 )
 نشر من قبل Thomas P. Krichbaum
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We summarize the present status of VLBI experiments at 3 mm (86 GHz), 2 mm (129-150 GHz) and 1.3 mm (215-230 GHz). We present and discuss a new 3 mm VLBI map of M87 (Virgo A), which has a spatial resolution of only approx. 20 Schwarzschild radii. We discuss recent VLBI results for SgrA* and argue in favor of new observations within an extended European mm-VLBI network, in order to search for variability. We discuss the possibilities to image the `event horizon of a super-massive black hole at wavelengths < 2mm, and conclude that the addition of large and sensitive millimetre telescopes such as CARMA, the SMA, the LMT and ALMA will be crucial for this.



قيم البحث

اقرأ أيضاً

Super-high spatial resolution observations in the infrared are now enabling major advances in our understanding of supermassive black hole systems at the centers of galaxies. Infrared interferometry, reaching resolutions of milliarcseconds to sub-mil liarcseconds, is drastically changing our view of the central structure from a static to a very dynamic one by spatially resolving to the pc-scale. We are also starting to measure the dynamical structure of fast moving gas clouds around active supermassive black holes at a scale of less than a light year. With further improvements on resolution and sensitivity, we will be able to directly image the exact site of the black holes feedback to its host galaxy, and quantify the effect of such interaction processes. Near-future high angular resolution studies will definitely advance our mass determinations for these black holes, and we might even witness the existence of binary black hole systems at the center of galaxies.
We report on new developments in VLBI, with emphasis on experiments performed at the highest frequencies possible to date (so called mm-VLBI). We have observed the nucleus of M 87 (Virgo A) with global VLBI at 3 mm. We show a new image of the inner-m ost jet region with an angular resolution of approx. 300 x 60 micro-arcseconds. In terms of Schwarzschild radii, this leads to an upper limit of the jet base of approx. 100 x 20 Schwarzschild radii. We also report on two VLBI pilot-experiments, which demonstrate the technical feasibility of global VLBI at 150 and 230 GHz (2 mm and 1.3 mm). The experiments lead to upper limits to the size of the unresolved AGN-cores in the 25 - 30 micro-arcsecond range. The participation of new and near-future mm-telescopes (like APEX, CARMA, SMA, LMT, ALMA, etc.) in global mm-VLBI will provide the necessary sensitivity for the imaging of black holes and their immediate environment.
In this poster contribution we highlight the equivalence between an Imaging Air Cherenkov Telescope (IACT) array and an Intensity Interferometer for a range of technical requirements. We touch on the differences between a Michelson and an Intensity I nterferometer and give a brief overview of the current IACT arrays, their upgrades and next generation concepts (CTA, AGIS, completion 2015). The latter are foreseen to include 30-90 telescopes that will provide 400-4000 different baselines that range in length between 50m and a kilometre. Intensity interferometry with such arrays of telescopes attains 50 micro-arcseconds resolution for a limiting V magnitude of ~8.5. This technique opens the possibility of a wide range of studies, amongst others, probing the stellar surface activity and the dynamic AU scale circumstellar environment of stars in various crucial evolutionary stages. Here we discuss possibilities for using IACT arrays as optical Intensity Interferometers.
Global VLBI imaging at millimeter and sub-millimeter wavelength overcomes the opacity barrier of synchrotron self-absorption in AGN and opens the direct view into sub-pc scale regions not accessible before. Since AGN variability is more pronounced at short millimeter wavelength, mm-VLBI can reveal structural changes in very early stages after outbursts. When combined with observations at longer wavelength, global 3mm and 1mm VLBI adds very detailed information. This helps to determine fundamental physical properties at the jet base, and in the vicinity of super-massive black holes at the center of AGN. Here we present new results from multi-frequency mm-VLBI imaging of OJ287 during a major outburst. We also report on a successful 1.3mm VLBI experiment with the APEX telescope in Chile. This observation sets a new record in angular resolution. It also opens the path towards future mm-VLBI with ALMA, which aims at the mapping of the black hole event horizon in nearby galaxies, and the study of the roots of jets in AGN.
The 6 billion solar mass supermassive black hole at the center of the giant elliptical galaxy M87 powers a relativistic jet. Observations at millimeter wavelengths with the Event Horizon Telescope have localized the emission from the base of this jet to angular scales comparable to the putative black hole horizon. The jet might be powered directly by an accretion disk or by electromagnetic extraction of the rotational energy of the black hole. However, even the latter mechanism requires a confining thick accretion disk to maintain the required magnetic flux near the black hole. Therefore, regardless of the jet mechanism, the observed jet power in M87 implies a certain minimum mass accretion rate. If the central compact object in M87 were not a black hole but had a surface, this accretion would result in considerable thermal near-infrared and optical emission from the surface. Current flux limits on the nucleus of M87 strongly constrain any such surface emission. This rules out the presence of a surface and thereby provides indirect evidence for an event horizon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا