ترغب بنشر مسار تعليمي؟ اضغط هنا

The Event Horizon of M87

83   0   0.0 ( 0 )
 نشر من قبل Eric S. Perlman
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The 6 billion solar mass supermassive black hole at the center of the giant elliptical galaxy M87 powers a relativistic jet. Observations at millimeter wavelengths with the Event Horizon Telescope have localized the emission from the base of this jet to angular scales comparable to the putative black hole horizon. The jet might be powered directly by an accretion disk or by electromagnetic extraction of the rotational energy of the black hole. However, even the latter mechanism requires a confining thick accretion disk to maintain the required magnetic flux near the black hole. Therefore, regardless of the jet mechanism, the observed jet power in M87 implies a certain minimum mass accretion rate. If the central compact object in M87 were not a black hole but had a surface, this accretion would result in considerable thermal near-infrared and optical emission from the surface. Current flux limits on the nucleus of M87 strongly constrain any such surface emission. This rules out the presence of a surface and thereby provides indirect evidence for an event horizon.

قيم البحث

اقرأ أيضاً

Black hole event horizons, causally separating the external universe from compact regions of spacetime, are one of the most exotic predictions of General Relativity (GR). Until recently, their compact size has prevented efforts to study them directly . Here we show that recent millimeter and infrared observations of Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, all but requires the existence of a horizon. Specifically, we show that these observations limit the luminosity of any putative visible compact emitting region to below 0.4% of Sgr A*s accretion luminosity. Equivalently, this requires the efficiency of converting the gravitational binding energy liberated during accretion into radiation and kinetic outflows to be greater than 99.6%, considerably larger than those implicated in Sgr A*, and therefore inconsistent with the existence of such a visible region. Finally, since we are able to frame this argument entirely in terms of observable quantities, our results apply to all geometric theories of gravity that admit stationary solutions, including the commonly discussed f(R) class of theories.
Event Horizon Telescope (EHT) observations at 230 GHz have now imaged polarized emission around the supermassive black hole in M87 on event-horizon scales. This polarized synchrotron radiation probes the structure of magnetic fields and the plasma pr operties near the black hole. Here we compare the resolved polarization structure observed by the EHT, along with simultaneous unresolved observations with the Atacama Large Millimeter/submillimeter Array, to expectations from theoretical models. The low fractional linear polarization in the resolved image suggests that the polarization is scrambled on scales smaller than the EHT beam, which we attribute to Faraday rotation internal to the emission region. We estimate the average density n_e of order 10^4-7 cm-3, magnetic field strength B of order 1-30 G, and electron temperature Te of order (1-12) x 10^10 K of the radiating plasma in a simple one-zone emission model. We show that the net azimuthal linear polarization pattern may result from organized, poloidal magnetic fields in the emission region. In a quantitative comparison with a large library of simulated polarimetric images from general relativistic magnetohydrodynamic (GRMHD) simulations, we identify a subset of physical models that can explain critical features of the polarimetric EHT observations while producing a relativistic jet of sufficient power. The consistent GRMHD models are all of magnetically arrested accretion disks, where near-horizon magnetic fields are dynamically important. We use the models to infer a mass accretion rate onto the black hole in M87 of (3-20) x 10^-4 Msun yr-1.
We have now entered the new era of high-resolution imaging astronomy with the beginning of the Event Horizon Telescope (EHT). The EHT can resolve the dynamics of matter in the immediate vicinity around black holes at and below the horizon scale. One of the candidate black holes, Sagittarius A* flares 1-4 times a day depending on the wavelength. A possible interpretation of these flares could be hotspots generated through magnetic reconnection events in the accretion flow. In this paper, we construct a semi-analytical model for hotspots that include the effects of shearing as a spot moves along the accretion flow. We then explore the ability of the EHT to recover these hotspots. Even including significant systematic uncertainties, such as thermal noise, diffractive scattering, and background emission due to an accretion disk, we were able to recover the hotspots and spacetime structure to sub-percent precision. Moreover, by observing multiple flaring events we show how the EHT could be used to tomographically map spacetime. This provides new avenues for testing relativistic fluid dynamics and general relativity near the event horizon of supermassive black holes.
In April 2019, the Event Horizon Telescope (EHT) collaboration revealed the first image of the candidate super-massive black hole (SMBH) at the centre of the giant elliptical galaxy Messier 87 (M87). This event-horizon-scale image shows a ring of glo wing plasma with a dark patch at the centre, which is interpreted as the shadow of the black hole. This breakthrough result, which represents a powerful confirmation of Einsteins theory of gravity, or general relativity, was made possible by assembling a global network of radio telescopes operating at millimetre wavelengths that for the first time included the Atacama Large Millimeter/ submillimeter Array (ALMA). The addition of ALMA as an anchor station has enabled a giant leap forward by increasing the sensitivity limits of the EHT by an order of magnitude, effectively turning it into an imaging array. The published image demonstrates that it is now possible to directly study the event horizon shadows of SMBHs via electromagnetic radiation, thereby transforming this elusive frontier from a mathematical concept into an astrophysical reality. The expansion of the array over the next few years will include new stations on different continents - and eventually satellites in space. This will provide progressively sharper and higher-fidelity images of SMBH candidates, and potentially even movies of the hot plasma orbiting around SMBHs. These improvements will shed light on the processes of black hole accretion and jet formation on event-horizon scales, thereby enabling more precise tests of general relativity in the truly strong field regime.
In 2017 April, the Event Horizon Telescope (EHT) observed the near-horizon region around the supermassive black hole at the core of the M87 galaxy. These 1.3 mm wavelength observations revealed a compact asymmetric ring-like source morphology. This s tructure originates from synchrotron emission produced by relativistic plasma located in the immediate vicinity of the black hole. Here we present the corresponding linear-polarimetric EHT images of the center of M87. We find that only a part of the ring is significantly polarized. The resolved fractional linear polarization has a maximum located in the southwest part of the ring, where it rises to the level of about 15%. The polarization position angles are arranged in a nearly azimuthal pattern. We perform quantitative measurements of relevant polarimetric properties of the compact emission and find evidence for the temporal evolution of the polarized source structure over one week of EHT observations. The details of the polarimetric data reduction and calibration methodology are provided. We carry out the data analysis using multiple independent imaging and modeling techniques, each of which is validated against a suite of synthetic data sets. The gross polarimetric structure and its apparent evolution with time are insensitive to the method used to reconstruct the image. These polarimetric images carry information about the structure of the magnetic fields responsible for the synchrotron emission. Their physical interpretation is discussed in an accompanying publication.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا