ﻻ يوجد ملخص باللغة العربية
We report on new developments in VLBI, with emphasis on experiments performed at the highest frequencies possible to date (so called mm-VLBI). We have observed the nucleus of M 87 (Virgo A) with global VLBI at 3 mm. We show a new image of the inner-most jet region with an angular resolution of approx. 300 x 60 micro-arcseconds. In terms of Schwarzschild radii, this leads to an upper limit of the jet base of approx. 100 x 20 Schwarzschild radii. We also report on two VLBI pilot-experiments, which demonstrate the technical feasibility of global VLBI at 150 and 230 GHz (2 mm and 1.3 mm). The experiments lead to upper limits to the size of the unresolved AGN-cores in the 25 - 30 micro-arcsecond range. The participation of new and near-future mm-telescopes (like APEX, CARMA, SMA, LMT, ALMA, etc.) in global mm-VLBI will provide the necessary sensitivity for the imaging of black holes and their immediate environment.
Global VLBI imaging at millimeter and sub-millimeter wavelength overcomes the opacity barrier of synchrotron self-absorption in AGN and opens the direct view into sub-pc scale regions not accessible before. Since AGN variability is more pronounced at
A long standing goal in astrophysics is to directly observe the immediate environment of a black hole with angular resolution comparable to the event horizon. Realizing this goal would open a new window on the study of General Relativity in the stron
We summarize the present status of VLBI experiments at 3 mm (86 GHz), 2 mm (129-150 GHz) and 1.3 mm (215-230 GHz). We present and discuss a new 3 mm VLBI map of M87 (Virgo A), which has a spatial resolution of only approx. 20 Schwarzschild radii. We
A review is given on the current status and selected results from large VLBI surveys of compact extragalactic radio sources made between 13 cm and 3 mm wavelengths and covering the entire sky. More than 4200 objects are observed and imaged with dynam
The Event Horizon Telescope (EHT) is a very long baseline interferometer built to image supermassive black holes on event-horizon scales. In this paper, we investigate candidate sites for an expanded EHT array with improved imaging capabilities. We u