ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Matter Search with Direction Sensitive Scintillators

96   0   0.0 ( 0 )
 نشر من قبل Hiroyuki Sekiya
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have carried out the dark matter search with a 116g direction-sensitive stilbene crystal in Kamioka Observatory. With the crystal fixed to the earth, we searched the modulation of thelight output. No modulation signal was found due to the small size of the detector crystal and the higher background rate yet to be eliminated. However, it demonstrated the effectiveness of the method of direction sensitive search for the dark matter with an implementation of the anisotropic organic scintillation crystal.



قيم البحث

اقرأ أيضاً

We developed a three-dimensional gaseous tracking device and performed a direction-sensitive dark matter search in a surface laboratory. By using 150 Torr carbon-tetrafluoride (CF_4 gas), we obtained a sky map drawn with the recoil directions of the carbon and fluorine nuclei, and set the first limit on the spin-dependent WIMP (Weakly Interacting Massive Particles)-proton cross section by a direction-sensitive method. Thus, we showed that a WIMP-search experiment with a gaseous tracking device can actually set limits. Furthermore, we demonstrated that this method will potentially play a certain role in revealing the nature of dark matter when a low-background large-volume detector is developed.
NEWAGE is a direction-sensitive dark matter search using a low-pressure gaseous time projection chamber. A low alpha-ray emission rate micro pixel chamber had been developed in order to reduce background for dark matter search. We conducted the dark matter search at the Kamioka Observatory in 2018. The total live time was 107.6 days corresponding to an exposure of 1.1 kg${cdot}$days. Two events remained in the energy region of 50-60 keV which was consistent with 2.5 events of the expected background. A directional analysis was carried out and no significant forward-backward asymmetry derived from the WIMP-nucleus elastic scatterings was found. Thus a 90% confidence level upper limit on Spin-Dependent WIMP-proton cross section of 50 pb for a WIMP mass of 100 GeV/c2 was derived. This limit is the most stringent yet obtained from direction-sensitive dark matter search experiments.
267 - D. Dujmic , P. Fisher , R. Lanza 2008
The known direction of motion of dark matter particles relative to the Earth may be a key for their unambiguous identification even in the presence of backgrounds. We describe a prototype detector that is able to reconstruct direction vectors of weak ly interacting massive particles that may the dominant constituent of the dark matter in our galaxy. The detector uses a low-density gas (CF4) in a 10liter time-projection chamber with mesh-based electrodes and optical and charge readout. Initial results confirm good performance in the reconstruction of direction angle and sense (head-tail) for low-momentum nuclear recoils.
A direction-sensitive dark matter search experiment at Kamioka underground laboratory with the NEWAGE-0.3a detector was performed. The NEWAGE- 0.3a detector is a gaseous micro-time-projection chamber filled with CF4 gas at 152 Torr. The fiducial volu me and target mass are 20*25*31 cm3 and 0.0115 kg, respectively. With an exposure of 0.524 kgdays, improved spin-dependent weakly interacting massive particle (WIMP)-proton cross section limits by a direction-sensitive method were achieved including a new record of 5400 pb for 150 GeV/c2 WIMPs. We studied the remaining background and found that ambient gamma-rays contributed about one-fifth of the remaining background and radioactive contaminants inside the gas chamber contributed the rest.
473 - D.Dujmic , P.Fisher , G.Sciolla 2008
Direction measurement of weakly interacting massive particles in time-projection chambers can provide definite evidence of their existence and help to determine their properties. This article demonstrates several concepts for charge amplification in time-projection chambers that can be used in direction-sensitive dark matter search experiments. We demonstrate reconstruction of the head-tail effect for nuclear recoils above 100keV, and discuss the detector performance in the context of dark matter detection and scaling to large detector volumes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا