ترغب بنشر مسار تعليمي؟ اضغط هنا

DMTPC-10L: Direction-Sensitive Dark Matter Detector Prototype

218   0   0.0 ( 0 )
 نشر من قبل Denis Dujmic
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The known direction of motion of dark matter particles relative to the Earth may be a key for their unambiguous identification even in the presence of backgrounds. We describe a prototype detector that is able to reconstruct direction vectors of weakly interacting massive particles that may the dominant constituent of the dark matter in our galaxy. The detector uses a low-density gas (CF4) in a 10liter time-projection chamber with mesh-based electrodes and optical and charge readout. Initial results confirm good performance in the reconstruction of direction angle and sense (head-tail) for low-momentum nuclear recoils.

قيم البحث

اقرأ أيضاً

We show data from a new type of detector that can be used to determine neutron flux, energy distribution, and direction of neutron motion for both fast and thermal neutrons. Many neutron detectors are plagued by large backgrounds from x-rays and gamm a rays, and most current neutron detectors lack single-event energy sensitivity or any information on neutron directionality. Even the best detectors are limited by cosmic ray neutron backgrounds. All applications (neutron scattering and radiography, measurements of solar and cosmic ray neutron flux, measurements of neutron interaction cross sections, monitoring of neutrons at nuclear facilities, oil exploration, and searches for fissile weapons of mass destruction) will benefit from the improved neutron detection sensitivity and improved measurements of neutron properties made possible by this detector. The detector is free of backgrounds from x-rays, gamma rays, beta particles, relativistic singely charged particles and cosmic ray neutrons. It is sensitive to thermal neutrons, fission neutrons, and high energy neutrons, with detection features distinctive for each energy range. It is capable of determining the location of a source of fission neutrons based on characteristics of elastic scattering of neutrons by helium nuclei. The detector we have constructed could identify one gram of reactor grade plutonium, one meter away, with less than one minute of observation time.
NEWAGE is a direction-sensitive dark-matter-search experiment that uses a micro-patterned gaseous detector, or {mu}-PIC, as the readout. The main background sources are {alpha}-rays from radioactive contaminants in the {mu}-PIC. We have therefore dev eloped a low-alpha-emitting {mu}-PICs and measured its performances. We measured the surface {alpha}-ray emission rate of the {mu}-PIC in the Kamioka mine using a surface {alpha}-ray counter based on a micro TPC.
A direction-sensitive dark matter search experiment at Kamioka underground laboratory with the NEWAGE-0.3a detector was performed. The NEWAGE- 0.3a detector is a gaseous micro-time-projection chamber filled with CF4 gas at 152 Torr. The fiducial volu me and target mass are 20*25*31 cm3 and 0.0115 kg, respectively. With an exposure of 0.524 kgdays, improved spin-dependent weakly interacting massive particle (WIMP)-proton cross section limits by a direction-sensitive method were achieved including a new record of 5400 pb for 150 GeV/c2 WIMPs. We studied the remaining background and found that ambient gamma-rays contributed about one-fifth of the remaining background and radioactive contaminants inside the gas chamber contributed the rest.
By correlating nuclear recoil directions with the Earths direction of motion through the Galaxy, a directional dark matter detector can unambiguously detect Weakly Interacting Massive Particles (WIMPs), even in the presence of backgrounds. Here, we d escribe the Dark Matter Time-Projection Chamber (DMTPC) detector, a TPC filled with CF4 gas at low pressure (0.1 atm). Using this detector, we have measured the vector direction (head-tail) of nuclear recoils down to energies of 100 keV with an angular resolution of <15 degrees. To study our detector backgrounds, we have operated in a basement laboratory on the MIT campus for several months. We are currently building a new, high-radiopurity detector for deployment underground at the Waste Isolation Pilot Plant facility in New Mexico.
The Dark Matter Time Projection Chamber (DMTPC) collaboration is developing a low pressure gas TPC for detecting Weakly Interacting Massive Particle (WIMP)-nucleon interactions. Optical readout with CCD cameras allows for the detection of the daily m odulation of the direction of the dark matter wind. In order to reach sensitivities required for WIMP detection, the detector needs to minimize backgrounds from electron recoils. This paper demonstrates that a simplified CCD analysis achieves $7.3times10^{-5}$ rejection of electron recoils while a charge analysis yields an electron rejection factor of $3.3times10^{-4}$ for events with $^{241}$Am-equivalent ionization energy loss between 40 keV and 200 keV. A combined charge and CCD analysis yields a background-limited upper limit of $1.1times10^{-5}$ (90% confidence level) for the rejection of $gamma$ and electron events. Backgrounds from alpha decays from the field cage are eliminated by introducing a veto electrode that surrounds the sensitive region in the TPC. CCD-specific backgrounds are reduced more than two orders of magnitude when requiring a coincidence with the charge readout.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا