ترغب بنشر مسار تعليمي؟ اضغط هنا

Direction-sensitive dark matter search with a low-background gaseous detector NEWAGE-0.3b

80   0   0.0 ( 0 )
 نشر من قبل Tomonori Ikeda
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NEWAGE is a direction-sensitive dark matter search using a low-pressure gaseous time projection chamber. A low alpha-ray emission rate micro pixel chamber had been developed in order to reduce background for dark matter search. We conducted the dark matter search at the Kamioka Observatory in 2018. The total live time was 107.6 days corresponding to an exposure of 1.1 kg${cdot}$days. Two events remained in the energy region of 50-60 keV which was consistent with 2.5 events of the expected background. A directional analysis was carried out and no significant forward-backward asymmetry derived from the WIMP-nucleus elastic scatterings was found. Thus a 90% confidence level upper limit on Spin-Dependent WIMP-proton cross section of 50 pb for a WIMP mass of 100 GeV/c2 was derived. This limit is the most stringent yet obtained from direction-sensitive dark matter search experiments.

قيم البحث

اقرأ أيضاً

168 - Ryota Yakabe 2020
The first directional dark matter search with three-dimensional tracking with head-tail sensitivity (3d-vector tracking analysis) was performed with a gaseous three-dimensional tarcking detector, or the NEWAGE-0.3b detector. The search was carried ou t from July 2013 to August 2017 (Run14 to Run18) at the Kamioka underground laboratory. The total livetime is 434.85 days corresponding to an exposure of 4.51 kg$cdot$days. A 90 % confidence level upper limit on spin-dependent WIMP-proton cross section of $4.3 times10^{2}$ pb for WIMPs with the mass of 150 GeV/$c^2$ is obtained.
A direction-sensitive dark matter search experiment at Kamioka underground laboratory with the NEWAGE-0.3a detector was performed. The NEWAGE- 0.3a detector is a gaseous micro-time-projection chamber filled with CF4 gas at 152 Torr. The fiducial volu me and target mass are 20*25*31 cm3 and 0.0115 kg, respectively. With an exposure of 0.524 kgdays, improved spin-dependent weakly interacting massive particle (WIMP)-proton cross section limits by a direction-sensitive method were achieved including a new record of 5400 pb for 150 GeV/c2 WIMPs. We studied the remaining background and found that ambient gamma-rays contributed about one-fifth of the remaining background and radioactive contaminants inside the gas chamber contributed the rest.
NEWAGE is a direction-sensitive dark-matter-search experiment that uses a micro-patterned gaseous detector, or {mu}-PIC, as the readout. The main background sources are {alpha}-rays from radioactive contaminants in the {mu}-PIC. We have therefore dev eloped a low-alpha-emitting {mu}-PICs and measured its performances. We measured the surface {alpha}-ray emission rate of the {mu}-PIC in the Kamioka mine using a surface {alpha}-ray counter based on a micro TPC.
The DAMIC (Dark Matter in CCDs) experiment searches for the interactions of dark matter particles with the nuclei and the electrons in the silicon bulk of thick fully depleted charge-coupled devices (CCDs). Because of the low noise and low dark curre nt, DAMIC CCDs are sensitive to the ionization signals expected from low-mass dark matter particles ($< 10$ GeV). A 40-gram target detector has collected data at the SNOLAB underground laboratory since 2017. Recent results from the searches for DM-electron scattering and hidden-photon absorption will be summarized and the status of WIMPs-nucleon search reported. A new detector -- DAMIC-M (DAMIC at Modane) -- with a mass-size of 1 kg and improved CCD readout is under design and will be installed at the underground laboratory of Modane, in France. The current status of DAMIC-M and the near future plans will be presented.
95 - H.Sekiya , M.Mionwa , Y.Shimizu 2004
We have carried out the dark matter search with a 116g direction-sensitive stilbene crystal in Kamioka Observatory. With the crystal fixed to the earth, we searched the modulation of thelight output. No modulation signal was found due to the small si ze of the detector crystal and the higher background rate yet to be eliminated. However, it demonstrated the effectiveness of the method of direction sensitive search for the dark matter with an implementation of the anisotropic organic scintillation crystal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا