ترغب بنشر مسار تعليمي؟ اضغط هنا

Flare-induced fountains and buried flares in AGN

37   0   0.0 ( 0 )
 نشر من قبل Rene Goosmann
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the local physical changes at the surface of an AGN accretion disk after the onset of a magnetic flare. The X-ray irradiation by a flare creates a hot spot at the disk surface where the plasma both heats up and expands in the vertical direction in order to regain the hydrostatic equilibrium. Assuming that the magnetic loop causing the flare is anchored deeply within the disk interior, we derive analytical estimates for the vertical dimension H_hot and the optical depth tau_es of the heated atmosphere as a function of the position within the spot. We perform computations for various values of the accretion rate dm/dt, the fraction f_cor of radiation dissipated within the disk corona, and the covering factor f_cover of the disk surface with flare-illuminated patches. It turns out that generally we can distinguish three characteristic radial zones within the disk showing a qualitatively different behavior of the heated material. In the innermost regions of the disk (inner zone) the expansion of the disk material is restricted by strong gravitational forces. Further out, the flare source, initially above the disk, soon becomes embedded by the expanding disk atmosphere. At these intermediate disk radii (middle zone) the material is optically thick thus greatly modifying the observed radiation by multiple Compton scattering. We show exemplary spectra models obtained from Monte Carlo simulations illustrating the trends. In the outermost regions of the disk (outer zone) the expanding material is optically thin and its influence on the observed spectra is smaller but pressure gradients in radial directions should cause the development of a fountain-like dynamical structure around the flare source. We discuss the observational consequences of our results.

قيم البحث

اقرأ أيضاً

We present our analysis of the three HII-buried-AGN: SDSS J091053+333008, SDSS J121837+091324, and SDSS J153002-020415, by studying their optical spectra extracted from SDSS. The location in the BPT diagnostic diagrams of the three galaxies indicates that the narrow emission lines are mainly exited from HII regions. However, after the removal of the host galaxys stellar emission, the emission lines display the typical feature of Narrow-line Seyfert 1-like. All of the three objects have large Eddington ratio, small black hole mass, and low star formation rate. We propose that the three galaxies are at the transit stage from the starburst-dominated phase to AGN-dominated phase.
One of the main dissipation processes acting on all scales in relativistic jets is thought to be governed by magnetic reconnection. Such dissipation processes have been studied in idealized environments, such as reconnection layers, which evolve in m erging islands and lead to the production of plasmoids, ultimately resulting in efficient particle acceleration. In accretion flows onto black holes, reconnection layers can be developed and destroyed rapidly during the turbulent evolution of the flow. We present a series of two-dimensional general-relativistic magnetohydrodynamic simulations of tori accreting onto rotating black holes focusing our attention on the formation and evolution of current sheets. Initially, the tori are endowed with a poloidal magnetic field having a multi-loop structure along the radial direction and with an alternating polarity. During reconnection processes, plasmoids and plasmoid chains are developed leading to a flaring activity and hence to a variable electromagnetic luminosity. We describe the methods developed to track automatically the plasmoids that are generated and ejected during the simulation, contrasting the behaviour of multi-loop initial data with that encountered in typical simulations of accreting black holes having initial dipolar field composed of one loop only. Finally, we discuss the implications that our results have on the variability to be expected in accreting supermassive black holes.
The intracluster medium (ICM) is a multi-phase environment, dynamically regulated by Active Galactic Nuclei (AGN), the motions of galaxies through it, and mergers with other clusters. AGN as a central heating source are key to preventing runaway cool ing flows, but their role in heating cores in a cosmological context is still poorly understood. The activity of the AGN is strongly linked to star formation, especially in the Brightest Cluster Galaxy (BCG), likely because both rely on cold phase gas. A self-consistent model for AGN and star formation in galaxy clusters thus requires cosmological context, higher resolution, and a careful modeling of cooling and heating balance. In this paper, we use the high-resolution hydrodynamical cosmological simulation of the RomulusC galaxy cluster to study in detail the role of AGN and a major, head-on merger in shaping the cluster core. The unprecedented resolution of the RomulusC simulation captures the multiphase structure of the ICM. The realistic large-scale outflows launched by very small-scale thermal injections, the improved modeling of turbulent diffusion and mixing, and the particle nature of the simulation allow us to carefully separate different heating channels. We show that AGN activity, while efficient at regulating star formation, is incapable of destroying a CC. Instead, that process is facilitated by a head-on, 1:8 mass ratio merger. The merger generates bulk and turbulent motions, which in turn mix high entropy gas generated by AGN and merger driven shocks, turbulent dissipation and sloshing of the ICM by infalling substructures. While central cooling times remain shorter than the Hubble time, restoring a CC is made more difficult by the reduced precipitation rates at larger radii, emphasizing that the AGN-ICM connection is truly a multi-scale problem.
300 - C. M. Booth 2007
Simulations of an isolated Milky Way-like galaxy, in which supernovae power a galactic fountain, reproduce the observed velocity and 21cm brightness statistics of galactic neutral hydrogen (HI). The simulated galaxy consists of a thin HI disk, simila r in extent and brightness to that observed in the Milky Way, and extra-planar neutral gas at a range of velocities due to the galactic fountain. Mock observations of the neutral gas resemble the HI flux measurements from the Leiden-Argentine-Bonn (LAB) HI, survey, including a high-velocity tail which matches well with observations of high-velocity clouds. The simulated high-velocity clouds are typically found close to the galactic disk, with a typical line-of-sight distance of 13kpc from observers on the solar circle. The fountain efficiently cycles matter from the centre of the galaxy to its outskirts at a rate of around 0.5 M_sun/yr
121 - C. Melioli 2008
The ejection of the gas out of the disk in late-type galaxies is related to star formation and is due mainly to Type II supernovae. In this paper we studied in detail the development of the Galactic fountains in order to understand their dynamical ev olution and their influence in the redistribution of the freshly delivered metals over the disk. To this aim, we performed a number of 3D hydrodynamical radiative cooling simulations of the gas in the Milky Way where the whole Galaxy structure, the Galactic differential rotation and the supernovae explosions generated by a single OB association are considered. A typical fountain powered by 100 Type II supernovae may eject material up to $sim 2$ kpc which than collapses back mostly in form of dense, cold clouds and filaments. The majority of the gas lifted up by the fountains falls back on the disk remaining within a radial distance $Delta R=0.5$ kpc from the place where the fountain originated. This localized circulation of disk gas does not influence the radial chemical gradients on large scale, as required by the chemical models of the Milky Way which reproduce the metallicity distribution without invoking large fluxes of metals. Simulations of multiple fountains fuelled by Type II supernovae of different OB associations will be presented in a companion paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا