ﻻ يوجد ملخص باللغة العربية
The intracluster medium (ICM) is a multi-phase environment, dynamically regulated by Active Galactic Nuclei (AGN), the motions of galaxies through it, and mergers with other clusters. AGN as a central heating source are key to preventing runaway cooling flows, but their role in heating cores in a cosmological context is still poorly understood. The activity of the AGN is strongly linked to star formation, especially in the Brightest Cluster Galaxy (BCG), likely because both rely on cold phase gas. A self-consistent model for AGN and star formation in galaxy clusters thus requires cosmological context, higher resolution, and a careful modeling of cooling and heating balance. In this paper, we use the high-resolution hydrodynamical cosmological simulation of the RomulusC galaxy cluster to study in detail the role of AGN and a major, head-on merger in shaping the cluster core. The unprecedented resolution of the RomulusC simulation captures the multiphase structure of the ICM. The realistic large-scale outflows launched by very small-scale thermal injections, the improved modeling of turbulent diffusion and mixing, and the particle nature of the simulation allow us to carefully separate different heating channels. We show that AGN activity, while efficient at regulating star formation, is incapable of destroying a CC. Instead, that process is facilitated by a head-on, 1:8 mass ratio merger. The merger generates bulk and turbulent motions, which in turn mix high entropy gas generated by AGN and merger driven shocks, turbulent dissipation and sloshing of the ICM by infalling substructures. While central cooling times remain shorter than the Hubble time, restoring a CC is made more difficult by the reduced precipitation rates at larger radii, emphasizing that the AGN-ICM connection is truly a multi-scale problem.
We present the results obtained from a total of 123 ks X-ray (Chandra) and 8 hrs of 1.4 GHz radio (Giant Metrewave Radio Telescope - GMRT) observations of the cool core cluster ZwCl 2701 (z = 0.214). These observations of ZwCl 2701 showed the presenc
Quasar absorption-line studies in the ultraviolet (UV) can uniquely probe the nature of the multiphase cool-warm (10^4 < T < 10^6 K) gas in and around galaxy clusters, promising to provide unprecedented insights into 1) interactions between the circu
We present a multi-wavelength analysis of the galaxy cluster A1668, performed by means of new EVLA and Chandra observations and archival H$alpha$ data. The radio images exhibit a small central source ($sim$14 kpc at 1.4 GHz) with L$_{text{1.4 GHz}}$
Feedback processes play a fundamental role in the regulation of the star formation (SF) activity in galaxies and, in particular, in the quenching of early-type galaxies (ETGs) as has been inferred by observational and numerical studies of Lambda CDM
We recommend that the planetary science and space exploration community engage in a robust reevaluation concerning the ethics of how future crewed and uncrewed missions to the Moon and Mars will interact with those planetary environments. This should