ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydrodynamical simulations of Galactic fountains I: evolution of single fountains

169   0   0.0 ( 0 )
 نشر من قبل Claudio Melioli
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Melioli




اسأل ChatGPT حول البحث

The ejection of the gas out of the disk in late-type galaxies is related to star formation and is due mainly to Type II supernovae. In this paper we studied in detail the development of the Galactic fountains in order to understand their dynamical evolution and their influence in the redistribution of the freshly delivered metals over the disk. To this aim, we performed a number of 3D hydrodynamical radiative cooling simulations of the gas in the Milky Way where the whole Galaxy structure, the Galactic differential rotation and the supernovae explosions generated by a single OB association are considered. A typical fountain powered by 100 Type II supernovae may eject material up to $sim 2$ kpc which than collapses back mostly in form of dense, cold clouds and filaments. The majority of the gas lifted up by the fountains falls back on the disk remaining within a radial distance $Delta R=0.5$ kpc from the place where the fountain originated. This localized circulation of disk gas does not influence the radial chemical gradients on large scale, as required by the chemical models of the Milky Way which reproduce the metallicity distribution without invoking large fluxes of metals. Simulations of multiple fountains fuelled by Type II supernovae of different OB associations will be presented in a companion paper.



قيم البحث

اقرأ أيضاً

321 - C. M. Booth 2007
Simulations of an isolated Milky Way-like galaxy, in which supernovae power a galactic fountain, reproduce the observed velocity and 21cm brightness statistics of galactic neutral hydrogen (HI). The simulated galaxy consists of a thin HI disk, simila r in extent and brightness to that observed in the Milky Way, and extra-planar neutral gas at a range of velocities due to the galactic fountain. Mock observations of the neutral gas resemble the HI flux measurements from the Leiden-Argentine-Bonn (LAB) HI, survey, including a high-velocity tail which matches well with observations of high-velocity clouds. The simulated high-velocity clouds are typically found close to the galactic disk, with a typical line-of-sight distance of 13kpc from observers on the solar circle. The fountain efficiently cycles matter from the centre of the galaxy to its outskirts at a rate of around 0.5 M_sun/yr
118 - A. Lapi (1 , 2 , 3 2020
We generalize the analytic solutions presented in Pantoni et al. (2019) by including a simple yet effective description of wind recycling and galactic fountains, with the aim of self-consistently investigating the spatially-averaged time evolution of the gas, stellar, metal, and dust content in disc-dominated late-type galaxies (LTGs). Our analytic solutions, when supplemented with specific prescriptions for parameter setting and with halo accretion rates from $N-$body simulations, can be exploited to reproduce the main statistical relationships followed by local LTGs; these involve, as a function of the stellar mass, the star formation efficiency, the gas mass fraction, the gas/stellar metallicity, the dust mass, the star formation rate, the specific angular momentum, and the overall mass/metal budget. Our analytic solutions allow to easily disentangle the diverse role of the main physical processes ruling galaxy formation in LTGs; in particular, we highlight the crucial relevance of wind recycling and galactic fountains in efficiently refurnishing the gas mass, extending the star-formation timescale, and boosting the metal enrichment in gas and stars. All in all, our analytic solutions constitute a transparent, handy, and fast tool that can provide a basis for improving the (subgrid) physical recipes presently implemented in more sophisticated semi-analytic models and numerical simulations, and can offer a benchmark for interpreting and forecasting current and future spatially-averaged observations of local and higher redshift LTGs.
46 - Curtis Struck 2018
We present the results of a simple numerical model with phenomenological cloud growth and explosive disruption processes, and with fountain launched ballistic motions of disrupted cloud fragments out of the disk. These processes generate an effective scattering of gas elements over much larger distances than noncircular impulses in the plane, which are quickly damped. The result is evolution of the global cloud density profile to an exponential form on a roughly Gyr timescale. This is consistent with our previous results on the effects of star scattering o? massive clumps in young disks, and gas holes in dwarf galaxies. However, in those cases the scattering processes generated thick, warm/hot stellar disks. Here we find that the exponential gas disks remain cold. Star formation in this gas would produce a thin exponential stellar disk.
109 - Jocelyne Guena 2012
We give an overview of the work done with the Laboratoire National de Metrologie et dEssais-Syst`emes de Reference Temps-Espace (LNE-SYRTE) fountain ensemble during the last five years. After a description of the clock ensemble, comprising three foun tains, FO1, FO2, and FOM, and the newest developments, we review recent studies of several systematic frequency shifts. This includes the distributed cavity phase shift, which we evaluate for the FO1 and FOM fountains, applying the techniques of our recent work on FO2. We also report calculations of the microwave lensing frequency shift for the three fountains, review the status of the blackbody radiation shift, and summarize recent experimental work to control microwave leakage and spurious phase perturbations. We give current accuracy budgets. We also describe several applications in time and frequency metrology: fountain comparisons, calibrations of the international atomic time, secondary representation of the SI second based on the 87Rb hyperfine frequency, absolute measurements of optical frequencies, tests of the T2L2 satellite laser link, and review fundamental physics applications of the LNE-SYRTE fountain ensemble. Finally, we give a summary of the tests of the PHARAO cold atom space clock performed using the FOM transportable fountain.
We discuss the local physical changes at the surface of an AGN accretion disk after the onset of a magnetic flare. The X-ray irradiation by a flare creates a hot spot at the disk surface where the plasma both heats up and expands in the vertical dire ction in order to regain the hydrostatic equilibrium. Assuming that the magnetic loop causing the flare is anchored deeply within the disk interior, we derive analytical estimates for the vertical dimension H_hot and the optical depth tau_es of the heated atmosphere as a function of the position within the spot. We perform computations for various values of the accretion rate dm/dt, the fraction f_cor of radiation dissipated within the disk corona, and the covering factor f_cover of the disk surface with flare-illuminated patches. It turns out that generally we can distinguish three characteristic radial zones within the disk showing a qualitatively different behavior of the heated material. In the innermost regions of the disk (inner zone) the expansion of the disk material is restricted by strong gravitational forces. Further out, the flare source, initially above the disk, soon becomes embedded by the expanding disk atmosphere. At these intermediate disk radii (middle zone) the material is optically thick thus greatly modifying the observed radiation by multiple Compton scattering. We show exemplary spectra models obtained from Monte Carlo simulations illustrating the trends. In the outermost regions of the disk (outer zone) the expanding material is optically thin and its influence on the observed spectra is smaller but pressure gradients in radial directions should cause the development of a fountain-like dynamical structure around the flare source. We discuss the observational consequences of our results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا