ترغب بنشر مسار تعليمي؟ اضغط هنا

The cluster-scale AGN outburst in Hydra A

70   0   0.0 ( 0 )
 نشر من قبل Paul Nulsen
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. E. J. Nulsen




اسأل ChatGPT حول البحث

Deep Chandra observations of the Hydra A Cluster reveal a feature in the X-ray surface brightness that surrounds the 330 MHz radio lobes of the AGN at the cluster center. Surface brightness profiles of this feature and its close association with the radio lobes argue strongly that it is a shock front driven by the expanding radio lobes. The Chandra image also reveals other new structure on smaller scales that is associated with the radio source, including a large cavity and filament. The shock front extends 200 - 300 kpc from the AGN at the cluster center and its strength varies along the front, with Mach numbers in the range ~ 1.2 - 1.4. It is stronger where it is more distant from the cluster center, as expected for a shock driven by expanding radio lobes. Simple modeling gives an age for the shock front ~ 1.4times10^8 y and a total energy driving it of ~ 10^{61} erg. The mean mechanical power driving the shock is comparable to quasar luminosities, well in excess of that needed to regulate the cooling core in Hydra A. This suggests that the feedback regulating cooling cores is inefficient, in that the bulk of the energy is deposited beyond the cooling core. In that case, a significant part of cluster preheating is a byproduct of the regulation of cooling cores.

قيم البحث

اقرأ أيضاً

In some galaxy clusters powerful AGN have blown bubbles with cluster scale extent into the ambient medium. The main pressure support of these bubbles is not known to date, but cosmic rays are a viable possibility. For such a scenario copious gamma-ra y emission is expected as a tracer of cosmic rays from these systems. Hydra A, the closest galaxy cluster hosting a cluster scale AGN outburst, located at a redshift of 0.0538, is investigated for being a gamma-ray emitter with the High Energy Stereoscopic System (H.E.S.S.) array and the Fermi Large Area Telescope (Fermi-LAT). Data obtained in 20.2 hours of dedicated H.E.S.S. observations and 38 months of Fermi-LAT data, gathered by its usual all-sky scanning mode, have been analyzed to search for a gamma-ray signal. No signal has been found in either data set. Upper limits on the gamma-ray flux are derived and are compared to models. These are the first limits on gamma-ray emission ever presented for galaxy clusters hosting cluster scale AGN outbursts. The non-detection of Hydra A in gamma-rays has important implications on the particle populations and physical conditions inside the bubbles in this system. For the case of bubbles mainly supported by hadronic cosmic rays, the most favorable scenario, that involves full mixing between cosmic rays and embedding medium, can be excluded. However, hadronic cosmic rays still remain a viable pressure support agent to sustain the bubbles against the thermal pressure of the ambient medium. The largest population of highly-energetic electrons which are relevant for inverse-Compton gamma-ray production is found in the youngest inner lobes of Hydra A. The limit on the inverse-Compton gamma-ray flux excludes a magnetic field below half of the equipartition value of 16 muG in the inner lobes.
Recent observations have revealed the existence of an enormously energetic > 10^61 erg AGN outburst in the Hydra A cluster of galaxies. This outburst has produced cavities in the intra-cluster medium, apparently supported by pressure from cosmic rays . Here we argue that if these cavities are filled with > GeV particles, these particles are very likely protons and nuclei. For a plausible spatial distribution of the target gas, based on observations and hydrodynamical simulations, we show that the pi^0-decay gamma-rays from these cosmic-rays may be detectable with the H.E.S.S.experiment.
We analyzed global properties, radial profiles and 2D maps of the metal abundances and temperature in the cool core cluster of galaxies Hydra A using a deep XMM-Newton exposure. The best fit among the available spectral models is provided by a Gaussi an distribution of the emission measure (gdem). We can accurately determine abundances for 7 elements in the cluster core with EPIC and 3 elements with RGS. The gdem model gives lower Fe abundances than a single temperature model. The abundance profiles for Fe, Si, S, but also O are centrally peaked. Combining the Hydra A results with 5 other clusters for which detailed chemical abundance studies are available, we find a significant decrease of O with radius, while the increase in the O/Fe ratio with radius is small within 0.1 r_200. We compare the observed abundance ratios with the mixing of various supernova type Ia and core-collapse yield models in different relative amounts. Producing the estimated O, Si and S peaks in Hydra A requires either an amount of metals ejected by stellar winds 3-8 times higher than predicted by available models or a remaining peak in the enrichment by core-collapse supernovae from the protocluster phase. The temperature map shows cooler gas extending in arm-like structures towards the north and south. These structures appear to be richer in metals than the ambient medium and spatially correlated with the large-scale radio lobes. We estimate the mass of cool gas, which was probably uplifted by buoyant bubbles of relativistic plasma produced by the AGN, to 1.6-6.1x10^9 M_sun, and the energy associated with this uplift to 3.3-12.5x10^58 ergs. The best estimate of the mass of Fe uplifted together with the cool gas is 1.7x10^7 M_sun, 15% of the total mass of Fe in the central 0.5arcmin region.
87 - Tom Rose , F. Combes 2020
We present Atacama Large Millimeter/submillimeter Array observations of the brightest cluster galaxy Hydra-A, a nearby ($z=0.054$) giant elliptical galaxy with powerful and extended radio jets. The observations reveal CO(1-0), CO(2-1), $^{13}$CO(2-1) , CN(2-1), SiO(5-4), HCO$^{+}$(1-0), HCO$^{+}$(2-1), HCN(1-0), HCN(2-1), HNC(1-0) and H$_{2}$CO(3-2) absorption lines against the galaxys bright and compact active galactic nucleus. These absorption features are due to at least 12 individual molecular clouds which lie close to the centre of the galaxy and have velocities of approximately $-50$ to $+10$ km/s relative to its recession velocity, where positive values correspond to inward motion. The absorption profiles are evidence of a clumpy interstellar medium within brightest cluster galaxies composed of clouds with similar column densities, velocity dispersions and excitation temperatures to those found at radii of several kpc in the Milky Way. We also show potential variation in a $sim 10$ km/s wide section of the absorption profile over a two year timescale, most likely caused by relativistic motions in the hot spots of the continuum source which change the background illumination of the absorbing clouds.
89 - Myriam Gitti 2006
We discuss the possible cosmological effects of powerful AGN outbursts in galaxy clusters by starting from the results of an XMM-Newton observation of the supercavity cluster MS0735+7421.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا