ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on the gamma-ray emission from the cluster-scale AGN outburst in the Hydra A galaxy cluster

81   0   0.0 ( 0 )
 نشر من قبل Wilfried Domainko
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In some galaxy clusters powerful AGN have blown bubbles with cluster scale extent into the ambient medium. The main pressure support of these bubbles is not known to date, but cosmic rays are a viable possibility. For such a scenario copious gamma-ray emission is expected as a tracer of cosmic rays from these systems. Hydra A, the closest galaxy cluster hosting a cluster scale AGN outburst, located at a redshift of 0.0538, is investigated for being a gamma-ray emitter with the High Energy Stereoscopic System (H.E.S.S.) array and the Fermi Large Area Telescope (Fermi-LAT). Data obtained in 20.2 hours of dedicated H.E.S.S. observations and 38 months of Fermi-LAT data, gathered by its usual all-sky scanning mode, have been analyzed to search for a gamma-ray signal. No signal has been found in either data set. Upper limits on the gamma-ray flux are derived and are compared to models. These are the first limits on gamma-ray emission ever presented for galaxy clusters hosting cluster scale AGN outbursts. The non-detection of Hydra A in gamma-rays has important implications on the particle populations and physical conditions inside the bubbles in this system. For the case of bubbles mainly supported by hadronic cosmic rays, the most favorable scenario, that involves full mixing between cosmic rays and embedding medium, can be excluded. However, hadronic cosmic rays still remain a viable pressure support agent to sustain the bubbles against the thermal pressure of the ambient medium. The largest population of highly-energetic electrons which are relevant for inverse-Compton gamma-ray production is found in the youngest inner lobes of Hydra A. The limit on the inverse-Compton gamma-ray flux excludes a magnetic field below half of the equipartition value of 16 muG in the inner lobes.

قيم البحث

اقرأ أيضاً

69 - P. E. J. Nulsen 2004
Deep Chandra observations of the Hydra A Cluster reveal a feature in the X-ray surface brightness that surrounds the 330 MHz radio lobes of the AGN at the cluster center. Surface brightness profiles of this feature and its close association with the radio lobes argue strongly that it is a shock front driven by the expanding radio lobes. The Chandra image also reveals other new structure on smaller scales that is associated with the radio source, including a large cavity and filament. The shock front extends 200 - 300 kpc from the AGN at the cluster center and its strength varies along the front, with Mach numbers in the range ~ 1.2 - 1.4. It is stronger where it is more distant from the cluster center, as expected for a shock driven by expanding radio lobes. Simple modeling gives an age for the shock front ~ 1.4times10^8 y and a total energy driving it of ~ 10^{61} erg. The mean mechanical power driving the shock is comparable to quasar luminosities, well in excess of that needed to regulate the cooling core in Hydra A. This suggests that the feedback regulating cooling cores is inefficient, in that the bulk of the energy is deposited beyond the cooling core. In that case, a significant part of cluster preheating is a byproduct of the regulation of cooling cores.
Recent observations have revealed the existence of an enormously energetic > 10^61 erg AGN outburst in the Hydra A cluster of galaxies. This outburst has produced cavities in the intra-cluster medium, apparently supported by pressure from cosmic rays . Here we argue that if these cavities are filled with > GeV particles, these particles are very likely protons and nuclei. For a plausible spatial distribution of the target gas, based on observations and hydrodynamical simulations, we show that the pi^0-decay gamma-rays from these cosmic-rays may be detectable with the H.E.S.S.experiment.
The total mass of a galaxy cluster is one of its most fundamental properties. Together with the redshift, the mass links observation and theory, allowing us to use the cluster population to test models of structure formation and to constrain cosmolog ical parameters. Building on the rich heritage from X-ray surveys, new results from Sunyaev-Zeldovich and optical surveys have stimulated a resurgence of interest in cluster cosmology. These studies have generally found fewer clusters than predicted by the baseline Planck LCDM model, prompting a renewed effort on the part of the community to obtain a definitive measure of the true cluster mass scale. Here we review recent progress on this front. Our theoretical understanding continues to advance, with numerical simulations being the cornerstone of this effort. On the observational side, new, sophisticated techniques are being deployed in individual mass measurements and to account for selection biases in cluster surveys. We summarise the state of the art in cluster mass estimation methods and the systematic uncertainties and biases inherent in each approach, which are now well identified and understood, and explore how current uncertainties propagate into the cosmological parameter analysis. We discuss the prospects for improvements to the measurement of the mass scale using upcoming multi-wavelength data, and the future use of the cluster population as a cosmological probe.
In these proceedings we summarize the current status of the study of the sensitivity of the Cherenkov Telescope Array (CTA) to detect diffuse gamma-ray emission from the Perseus galaxy cluster. Gamma-ray emission is expected in galaxy clusters both f rom interactions of cosmic rays (CR) with the intra-cluster medium, or as a product of annihilation or decay of dark matter (DM) particles in case they are weakly interactive massive particles (WIMPs). The observation of Perseus has been proposed as one of the CTA Key Science Projects. In this contribution, we focus on the DM-induced component of the flux. Our DM modelling includes the substructures we expect in the main halo which will boost the annihilation signal significantly. We adopt an ON/OFF observation strategy and simulate the expected gamma-ray signals. Finally we compute the expected CTA sensitivity using a likelihood maximization analysis including the most recent CTA instrument response functions. In absence of signal, we show that CTA will allow us to provide stringent and competitive constraints on TeV DM, especially for the case of DM decay.
103 - Y. Y. Kovalev 2009
We have compared the radio emission from a sample of parsec-scale AGN jets as measured by the VLBA at 15 GHz, with their associated gamma-ray properties that are reported in the Fermi LAT 3-month bright source list. We find in our radio-selected samp le that the gamma-ray photon flux correlates well with the quasi-simultaneously measured compact radio flux density. The LAT-detected jets in our radio-selected complete sample generally have higher compact radio flux densities, and their parsec-scale cores are brighter (i.e., have higher brightness temperature) than the jets in the LAT non-detected objects. This suggests that the jets of bright gamma-ray AGN have preferentially higher Doppler-boosting factors. In addition, AGN jets tend to be found in a more active radio state within several months from LAT-detection of their strong gamma-ray emission. This result becomes more pronounced for confirmed gamma-ray flaring sources. We identify the parsec-scale radio core as a likely location for both the gamma-ray and radio flares, which appear within typical timescales of up to a few months of each other.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا