ترغب بنشر مسار تعليمي؟ اضغط هنا

High-velocity gas toward hot molecular cores: evidence for collimated outflows from embedded sources

62   0   0.0 ( 0 )
 نشر من قبل Andy Gibb
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A.G. Gibb




اسأل ChatGPT حول البحث

We present observations made with the Berkeley-Illinois-Maryland Association millimeter array of the H2S 2(2,0)-2(1,1) and C18O 2-1 transitions toward a sample of four hot molecular cores associated with ultracompact HII regions: G9.62+0.19, G10.47+0.03, G29.96-0.02 and G31.41+0.31. The angular resolution varies from 1.5 to 2.4 arcsec, corresponding to scales of ~0.06 pc at the distance of these sources. High-velocity wings characteristic of molecular outflows are detected toward all four sources in the H2S line. In two cases (G29.96 and G31.41) red- and blueshifted lobes are clearly defined and spatially separate, indicating that the flows are collimated. We also confirm the previous detection of the outflow in G9.62F. Although the gas-phase H2S abundance is not well constrained, assuming a value of 10^-7 yields lower limits to total outflow masses of ~8 Msun, values which are consistent with the driving sources being massive protostars. Linear velocity gradients are detected in both C18O and H2S across G9.62, G29.96 and, to a lesser extent, G31.41. These gradients are observed to be at a different position angle to the outflow in G9.62F and G29.96, suggestive of a rotation signature in these two hot cores. Our observations show that these hot cores contain embedded massive protostellar objects which are driving bipolar outflows. Furthermore, the lack of strong centimeter-wave emission toward the outflow centers in G29.96 and G31.41 indicates that the outflow phase begins prior to the formation of a detectable ultracompact HII region.

قيم البحث

اقرأ أيضاً

128 - R. Visser 2011
Aims. Young stars interact vigorously with their surroundings, as evident from the highly rotationally excited CO (up to Eup=4000 K) and H2O emission (up to 600 K) detected by the Herschel Space Observatory in embedded low-mass protostars. Our aim is to construct a model that reproduces the observations quantitatively, to investigate the origin of the emission, and to use the lines as probes of the various heating mechanisms. Methods. The model consists of a spherical envelope with a bipolar outflow cavity. Three heating mechanisms are considered: passive heating by the protostellar luminosity, UV irradiation of the outflow cavity walls, and C-type shocks along the cavity walls. Line fluxes are calculated for CO and H2O and compared to Herschel data and complementary ground-based data for the protostars NGC1333 IRAS2A, HH 46 and DK Cha. The three sources are selected to span a range of evolutionary phases and physical characteristics. Results. The passively heated gas in the envelope accounts for 3-10% of the CO luminosity summed over all rotational lines up to J=40-39; it is best probed by low-J CO isotopologue lines such as C18O 2-1 and 3-2. The UV-heated gas and the C-type shocks, probed by 12CO 10-9 and higher-J lines, contribute 20-80% each. The model fits show a tentative evolutionary trend: the CO emission is dominated by shocks in the youngest source and by UV-heated gas in the oldest one. This trend is mainly driven by the lower envelope density in more evolved sources. The total H2O line luminosity in all cases is dominated by shocks (>99%). The exact percentages for both species are uncertain by at least a factor of 2 due to uncertainties in the gas temperature as function of the incident UV flux. However, on a qualitative level, both UV-heated gas and C-type shocks are needed to reproduce the emission in far-infrared rotational lines of CO and H2O.
76 - D. E. Welty 2002
We combine UV spectra obtained with the HST/GHRS echelle, IMAPS, and Copernicus to study the abundances and physical conditions in the predominantly ionized gas seen at high (-105 to -65 km/s) and intermediate velocities (-60 to -10 km/s) toward zeta Ori. We have high resolution (FWHM ~ 3.3-4.5 km/s) and/or high S/N spectra for at least two significant ions of C, N, Al, Si, S, and Fe -- enabling accurate estimates for both the total N(H II) and the elemental depletions. C, N, and S have essentially solar relative abundances; Al, Si, and Fe appear to be depleted by about 0.8, 0.3-0.4, and 0.95 dex, respectively. While various ion ratios would be consistent with collisional ionization equilibrium (CIE) for T ~ 25,000-80,000 K, the widths of individual high-velocity absorption components indicate that T ~ 9000 K -- so the gas is not in CIE. Analysis of the C II fine-structure excitation equilibrium yields estimated densities (n_e ~ n_H ~ 0.1-0.2 cm^{-3}), thermal pressures (2 n_H T ~ 2000-4000 cm^{-3}K), and thicknesses (0.5-2.7 pc) for the individual clouds. We compare the abundances and physical properties derived for these clouds with those found for gas at similar velocities toward 23 Ori and tau CMa, and also with several models for shocked gas. While the shock models can reproduce some features of the observed line profiles and some of the observed ion ratios, there are also significant differences. The measured depletions suggest that ~10% of the Al, Si, and Fe originally locked in dust in the pre-shock medium may have been returned to the gas phase, consistent with predictions for the destruction of silicate dust in a 100 km/s shock. The near-solar gas phase abundance of carbon, however, seems inconsistent with the predicted longer time scales for the destruction of graphite grains.
97 - Chen Chen , Fred Hamann , Bo Ma 2021
It is common to assume that all narrow absorption lines (NALs) at extreme high-velocity shifts form in cosmologically intervening gas or galaxies unrelated to quasars. However, previous detailed studies of individual quasars have shown that some NALs at these large velocity shifts do form in high-speed quasar ejecta. We search for extreme high-velocity NAL outflows (with speeds $sim$0.1-0.2c) based on relationships with associated absorption lines (AALs) and broad absorption-line (BAL) outflows. We find that high-velocity NALs are strongly correlated with AALs, BALs, and radio loudness, indicating that a significant fraction of high-velocity systems are either ejected from the quasars or form in material swept up by the radio jets (and are not unrelated intervening gas). We also consider line-locked C IV doublets as another indicator of high-velocity NALs formed in outflows. The fact that line-locked NALs are highly ionized and correlated with BAL outflows and radio-loud quasars implies that physical line locking due to radiative forces is both common and real, which provides indirect evidence that a significant fraction of high-velocity NALs are intrinsic to quasars.
Molecular clouds are a fundamental ingredient of galaxies: they are the channels that transform the diffuse gas into stars. The detailed process of how they do it is not completely understood. We review the current knowledge of molecular clouds and t heir substructure from scales $sim~$1~kpc down to the filament and core scale. We first review the mechanisms of cloud formation from the warm diffuse interstellar medium down to the cold and dense molecular clouds, the process of molecule formation and the role of the thermal and gravitational instabilities. We also discuss the main physical mechanisms through which clouds gather their mass, and note that all of them may have a role at various stages of the process. In order to understand the dynamics of clouds we then give a critical review of the widely used virial theorem, and its relation to the measurable properties of molecular clouds. Since these properties are the tools we have for understanding the dynamical state of clouds, we critically analyse them. We finally discuss the ubiquitous filamentary structure of molecular clouds and its connection to prestellar cores and star formation.
We have obtained narrow-band images and high-resolution spectra of the planetary nebulae NGC 6337, He 2-186, and K 4-47, with the aim of investigating the relation between their main morphological components and several low-ionization features presen t in these nebulae. The data suggest that NGC 6337 is a bipolar PN seen almost pole on, with polar velocities higher than 200 km/s. The bright inner ring of the nebula is interpreted to be the equatorial density enhancement. It contains a number of low-ionization knots and outward tails that we ascribe to dynamical instabilities leading to fragmentation of the ring or transient density enhancements due to the interaction of the ionization front with previous density fluctuations in the ISM. The lobes show a pronounced point-symmetric morphology and two peculiar low-ionization filaments whose nature remains unclear. The most notable characteristic of He 2-186 is the presence of two high-velocity (higher than 135 km/s) knots from which an S-shaped lane of emission departs toward the central star. K 4-47 is composed of a compact core and two high-velocity, low-ionization blobs. We interpret the substantial broadening of line emission from the blobs as a signature of bow shocks, and using the modeling of Hartigan, Raymond, & Hartman (1987), we derive a shock velocity of 150 km/s and a mild inclination of the outflow on the plane of the sky. We discuss possible scenarios for the formation of these nebulae and their low-ionization features. In particular, the morphology of K 4-47 hardly fits into any of the usually adopted mass-loss geometries for single AGB stars. Finally, we discuss the possibility that point-symmetric morphologies in the lobes of NGC 6337 and the knots of He 2-186 are the result of precessing outflows from the central stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا