ترغب بنشر مسار تعليمي؟ اضغط هنا

Intermediate- and High-Velocity Ionized Gas toward zeta Orionis

77   0   0.0 ( 0 )
 نشر من قبل Dan Welty
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. E. Welty




اسأل ChatGPT حول البحث

We combine UV spectra obtained with the HST/GHRS echelle, IMAPS, and Copernicus to study the abundances and physical conditions in the predominantly ionized gas seen at high (-105 to -65 km/s) and intermediate velocities (-60 to -10 km/s) toward zeta Ori. We have high resolution (FWHM ~ 3.3-4.5 km/s) and/or high S/N spectra for at least two significant ions of C, N, Al, Si, S, and Fe -- enabling accurate estimates for both the total N(H II) and the elemental depletions. C, N, and S have essentially solar relative abundances; Al, Si, and Fe appear to be depleted by about 0.8, 0.3-0.4, and 0.95 dex, respectively. While various ion ratios would be consistent with collisional ionization equilibrium (CIE) for T ~ 25,000-80,000 K, the widths of individual high-velocity absorption components indicate that T ~ 9000 K -- so the gas is not in CIE. Analysis of the C II fine-structure excitation equilibrium yields estimated densities (n_e ~ n_H ~ 0.1-0.2 cm^{-3}), thermal pressures (2 n_H T ~ 2000-4000 cm^{-3}K), and thicknesses (0.5-2.7 pc) for the individual clouds. We compare the abundances and physical properties derived for these clouds with those found for gas at similar velocities toward 23 Ori and tau CMa, and also with several models for shocked gas. While the shock models can reproduce some features of the observed line profiles and some of the observed ion ratios, there are also significant differences. The measured depletions suggest that ~10% of the Al, Si, and Fe originally locked in dust in the pre-shock medium may have been returned to the gas phase, consistent with predictions for the destruction of silicate dust in a 100 km/s shock. The near-solar gas phase abundance of carbon, however, seems inconsistent with the predicted longer time scales for the destruction of graphite grains.



قيم البحث

اقرأ أيضاً

463 - David C. Knauth 2003
We present Far Ultraviolet Spectroscopic Explorer and Space Telescope Imaging Spectrograph observations of high-ionization interstellar absorption toward HD 14434 [(l, b) = (135.1, -3.8); d ~ 2.3 kpc], an O5.5 V star in the Perseus OB1 Association. I ntermediate-velocity interstellar Si IV and C IV absorption is present at V_LSR = -67 km/s, while low-ionization gas associated with the Perseus arm is detected at ~ -50 km/s. Neither N V nor O VI is detected at V_LSR = -67 km/s; although Al III and Fe III, tracers of warm ionized gas, are seen. The high-ion column densities in the -67 km/s component are log[N(C IV)] = 13.92 +/- 0.02 cm^-2, log[N(Si IV)] = 13.34 +/- 0.02 cm^-2, log[N(N V)] < 12.65 cm^-2, and log[N(O VI)] < 13.73 cm^-2 (3-sigma limits). The observed C IV/Si IV ratio of 3.8 +/- 0.3 in this intermediate-velocity cloud (IVC) is similar to the Galactic average (4.3 +/- 1.9). Our analysis of the Si IV andC IV line widths yields a temperature of T = 10,450 +/- 3,400 K for this component. At this low temperature, neither Si IV nor C IV can be produced via collisions. We investigate several photoionization models to explain the intermediate-velocity Si IV and C IV absorption toward HD 14434. Photoionization models employing cooling of a hot (T ~ 10^6 K) diffuse plasma as the source of ionizing radiation reproduces the observed properties of the IVC toward HD 14434 quite well. The hot plasma responsible for the ionizing radiation in these models may be attributed to hot gas contained in a supershell in or near the Perseus Arm or from a more generally distributed hot ionized medium.
We report the results of an extensive FUSE study of high velocity OVI absorption along 102 complete sight lines through the Galactic halo. The high velocity OVI traces a variety of phenomena, including tidal interactions with the Magellanic Clouds, a ccretion of gas, outflow from the Galactic disk, warm/hot gas interactions in a highly extended Galactic corona, and intergalactic gas in the Local Group. We identify 85 high velocity OVI features at velocities of -500 < v(LSR) < +500 km/s along 59 of the 102 sight lines. Approximately 60% of the sky (and perhaps as much as 85%) is covered by high velocity H+ associated with the high velocity OVI. Some of the OVI is associated with known high velocity HI structures (e.g., the Magellanic Stream, Complexes A and C), while some OVI features have no counterpart in HI 21cm emission. The smaller dispersion in the OVI velocities in the GSR and LGSR reference frames compared to the LSR is necessary (but not conclusive) evidence that some of the clouds are extragalactic. Most of the OVI cannot be produced by photoionization, even if the gas is irradiated by extragalactic background radiation. Collisions in hot gas are the primary OVI ionization mechanism. We favor production of some of the OVI at the boundaries between warm clouds and a highly extended [R > 70 kpc], hot [T > 10^6 K], low-density [n < 10^-4 cm^-3] Galactic corona or Local Group medium. A hot Galactic corona or Local Group medium and the prevalence of high velocity OVI are consistent with predictions of galaxy formation scenarios. Distinguishing between the various phenomena producing high velocity OVI will require continuing studies of the distances, kinematics, elemental abundances, and physical states of the different types of high velocity OVI features found in this study. (abbreviated)
We present the first detection of the H40a, H34a and H31a radio recombination lines (RRLs) at millimeter wavelengths toward the high-velocity, ionized jet in the Cepheus A HW2 star forming region. From our single-dish and interferometric observations , we find that the measured RRLs show extremely broad asymmetric line profiles with zero-intensity linewidths of ~1100 kms-1. From the linewidths, we estimate a terminal velocity for the ionized gas in the jet of >500 kms-1, consistent with that obtained from the proper motions of the HW2 radio jet. The total integrated line-to-continuum flux ratios of the H40a, H34a and H31a lines are 43, 229 and 280 kms-1, clearly deviating from LTE predictions. These ratios are very similar to those observed for the RRL maser toward MWC349A, suggesting that the intensities of the RRLs toward HW2 are affected by maser emission. Our radiative transfer modeling of the RRLs shows that their asymmetric profiles could be explained by maser emission arising from a bi-conical radio jet with a semi-aperture angle of 18 deg, electron density distribution varying as r^(-2.11) and turbulent and expanding wind velocities of 60 and 500 kms-1.
61 - A.G. Gibb 2004
We present observations made with the Berkeley-Illinois-Maryland Association millimeter array of the H2S 2(2,0)-2(1,1) and C18O 2-1 transitions toward a sample of four hot molecular cores associated with ultracompact HII regions: G9.62+0.19, G10.47+0 .03, G29.96-0.02 and G31.41+0.31. The angular resolution varies from 1.5 to 2.4 arcsec, corresponding to scales of ~0.06 pc at the distance of these sources. High-velocity wings characteristic of molecular outflows are detected toward all four sources in the H2S line. In two cases (G29.96 and G31.41) red- and blueshifted lobes are clearly defined and spatially separate, indicating that the flows are collimated. We also confirm the previous detection of the outflow in G9.62F. Although the gas-phase H2S abundance is not well constrained, assuming a value of 10^-7 yields lower limits to total outflow masses of ~8 Msun, values which are consistent with the driving sources being massive protostars. Linear velocity gradients are detected in both C18O and H2S across G9.62, G29.96 and, to a lesser extent, G31.41. These gradients are observed to be at a different position angle to the outflow in G9.62F and G29.96, suggestive of a rotation signature in these two hot cores. Our observations show that these hot cores contain embedded massive protostellar objects which are driving bipolar outflows. Furthermore, the lack of strong centimeter-wave emission toward the outflow centers in G29.96 and G31.41 indicates that the outflow phase begins prior to the formation of a detectable ultracompact HII region.
We present an atlas of three-dimensional (position-position-velocity) spectra of the Orion Nebula in optical emission lines from a variety of different ionization stages: [O I] 6300, [S II] 6716,6731, [N II] 6584, [S III] 6312, H alpha 6563, and [O I II] 5007. These transitions provide point to point information about the physical structure and kinematics of the nebula at an effective resolution of 3 x 2 x 10 km/s, clearly showing the large scale behavior of the ionized gas and the presence of localized phenomena such as Herbig-Haro outflows. As an example application of the atlas, we present a statistical analysis of the widths of the H alpha, [O III], and [N II] lines that permits a determination of the mean electron temperature in the nebula of (9200 +/- 400) K. We also find, in contradiction to previous claims, that the non-thermal line broadening is not significantly different between recombination lines and collisional lines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا