ﻻ يوجد ملخص باللغة العربية
Theoretical studies of the physical processes guiding the formation and evolution of galaxies and galaxy clusters in the X-ray are mainly based on the results of numerical hydrodynamical N-body simulations, which in turn are often directly compared to X-ray observations. Although trivial in principle, these comparisons are not always simple. We demonstrate that the projected spectroscopic temperature of thermally complex clusters obtained from X-ray observations is always lower than the emission-weighed temperature, which is widely used in the analysis of numerical simulations. We show that this temperature bias is mainly related to the fact that the emission-weighted temperature does not reflect the actual spectral properties of the observed source. This has important implications for the study of thermal structures in clusters, especially when strong temperature gradients, like shock fronts, are present. Because of this bias, in real observations shock fronts appear much weaker than what is predicted by emission-weighted temperature maps, and may even not be detected. This may explain why, although numerical simulations predict that shock fronts are a quite common feature in clusters of galaxies, to date there are very few observations of objects in which they are clearly seen. To fix this problem we propose a new formula, the spectroscopic-like temperature function, and show that, for temperature larger than 3 keV, it approximates the spectroscopic temperature better than few per cent, making simulations more directly comparable to observations.
Theoretical studies of the physical processes in clusters of galaxies are mainly based on the results of numerical simulations, which in turn are often directly compared to X-ray observations. Although trivial in principle, these comparisons are not
We use N-body simulations to examine whether a characteristic turnaround radius, as predicted from the spherical collapse model in a $rm {Lambda CDM}$ Universe, can be meaningfully identified for galaxy clusters, in the presence of full three-dimensi
We present a near-infrared K_n-band photometric study of edge-on galaxies with a box/peanut-shaped `bulge. The morphology of the galaxies is analysed using unsharp masking and fits to the vertical surface brightness profiles, and the results are comp
The archival XMM-Newton data of the central region of M31 were analyzed for diffuse X-ray emission. Point sources with the 0.5--10 keV luminosity exceeding $sim 4 times 10^{35}$ erg s$^{-1}$ were detected. Their summed spectra are well reproduced by
We briefly review some of the progress made in the last decade in the study of the X-ray properties of the quasar population from the luminous, local objects observed by BeppoSAX to the large, rapidly increasing population of z>4 quasars detected by Chandra and XMM-Newton in recent years.