ﻻ يوجد ملخص باللغة العربية
This paper presents a frequentist analysis of the hot and cold spots of the cosmic microwave background data collected by the Wilkinson Microwave Anisotropy Probe (WMAP). We compare the WMAP temperature statistics of extrema (number of extrema, mean excursion, variance, skewness and kurtosis of the excursion) to Monte-Carlo simulations. We find that, on average, the local maxima (high temperatures in the anisotropy) are too cold and the local minima are too warm. In order to quantify this claim we describe a two-sided statistical hypothesis test which we advocate for other investigations of the Gaussianity hypothesis. Using this test we reject the isotropic Gaussian hypothesis at more than 99% confidence in a well-defined way. Our claims are based only on regions that are outside the most conservative WMAP foreground mask. We perform our test separately on maxima and minima, and on the north and south ecliptic and Galactic hemispheres and reject Gaussianity at above 95% confidence for almost all tests of the mean excursions. The same test also shows the variance of the maxima and minima to be low in the ecliptic north (99% confidence), but consistent in the south; this effect is not as pronounced in the Galactic north and south hemispheres.
We present a careful frequentist analysis of one- and two-point statistics of the hot and cold spots in the cosmic microwave background (CMB) data obtained by the Wilkinson Microwave Anisotropy Probe (WMAP). Our main result is the detection of a new
Angle-resolved photoemission spectroscopy (ARPES) is used to study the energy and momentum dependence of the inelastic scattering rates and the mass renormalization of charge carriers in LiFeAs at several high symmetry points in the Brillouin zone. A
We introduce the numbers of hot and cold spots, $n_h$ and $n_c$, of excursion sets of the CMB temperature anisotropy maps as statistical observables that can discriminate different non-Gaussian models. We numerically compute them from simulations of
Very deep neutral hydrogen (HI) observations of the edge-on spiral galaxy NGC 3079 with the Westerbork Synthesis Radio Telescope (WSRT) are presented. The galaxy has been studied extensively in different wavelengths and known for its several unique a
Cosmologists have suggested a number of intriguing hypotheses for the origin of the WMAP cold spot, the coldest extended region seen in the CMB sky, including a very large void and a collapsing texture. Either hypothesis predicts a distinctive CMB le