ترغب بنشر مسار تعليمي؟ اضغط هنا

A Statistically Robust 3-Sigma Detection of Non-Gaussianity in the WMAP Data Using Hot and Cold Spots

223   0   0.0 ( 0 )
 نشر من قبل David Larson
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a careful frequentist analysis of one- and two-point statistics of the hot and cold spots in the cosmic microwave background (CMB) data obtained by the Wilkinson Microwave Anisotropy Probe (WMAP). Our main result is the detection of a new anomaly at the 3-sigma level using temperature-weighted extrema correlation functions. We obtain this result using a simple hypothesis test which reduces the maximum risk of a false detection to the same level as the claimed significance of the test. We further present a detailed study of the robustness of our earlier claim (Larson and Wandelt 2004) under variations in the noise model and in the resolution of the map. Free software which implements our test is available online.

قيم البحث

اقرأ أيضاً

This paper presents a frequentist analysis of the hot and cold spots of the cosmic microwave background data collected by the Wilkinson Microwave Anisotropy Probe (WMAP). We compare the WMAP temperature statistics of extrema (number of extrema, mean excursion, variance, skewness and kurtosis of the excursion) to Monte-Carlo simulations. We find that, on average, the local maxima (high temperatures in the anisotropy) are too cold and the local minima are too warm. In order to quantify this claim we describe a two-sided statistical hypothesis test which we advocate for other investigations of the Gaussianity hypothesis. Using this test we reject the isotropic Gaussian hypothesis at more than 99% confidence in a well-defined way. Our claims are based only on regions that are outside the most conservative WMAP foreground mask. We perform our test separately on maxima and minima, and on the north and south ecliptic and Galactic hemispheres and reject Gaussianity at above 95% confidence for almost all tests of the mean excursions. The same test also shows the variance of the maxima and minima to be low in the ecliptic north (99% confidence), but consistent in the south; this effect is not as pronounced in the Galactic north and south hemispheres.
We introduce the numbers of hot and cold spots, $n_h$ and $n_c$, of excursion sets of the CMB temperature anisotropy maps as statistical observables that can discriminate different non-Gaussian models. We numerically compute them from simulations of non-Gaussian CMB temperature fluctuation maps. The first kind of non-Gaussian model we study is the local type primordial non-Gaussianity. The second kind of models have some specific form of the probability distribution function from which the temperature fluctuation value at each pixel is drawn, obtained using HEALPIX. We find the characteristic non-Gaussian deviation shapes of $n_h$ and $n_c$, which is distinct for each of the models under consideration. We further demonstrate that $n_h$ and $n_c$ carry additional information compared to the genus, which is just their linear combination, making them valuable additions to the Minkowski Functionals in constraining non-Gaussianity.
We present evidence for the detection of primordial non-Gaussianity of the local type (fNL), using the temperature information of the Cosmic Microwave Background (CMB) from the WMAP 3-year data. We employ the bispectrum estimator of non-Gaussianity d escribed in (Yadav et al. 2007) which allows us to analyze the entirety of the WMAP data without an arbitrary cut-off in angular scale. Using the combined information from WMAPs two main science channels up to lmax=750 and the conservative Kp0 foreground mask we find 27 < fNL < 147 at 95% C.L., with a central value of fNL=87. This corresponds to a rejection of fNL=0 at more than 99.5% significance. We find that this detection is robust to variations in lmax, frequency and masks, and that no known foreground, instrument systematic, or secondary anisotropy explains our signal while passing our suite of tests. We explore the impact of several analysis choices on the stated significance and find 2.5 sigma for the most conservative view. We conclude that the WMAP 3-year data disfavors canonical single field slow-roll inflation.
We present a search for non-Gaussianity in the WMAP first-year data using the two-point correlation function of maxima and minima in the temperature map. We find evidence for non-Gaussianity on large scales, whose origin appears to be associated with unsubstracted foregrounds, but which is not entirely clear. The signal appears to be associated most strongly with cold spots, and is more pronounced in the Southern galactic hemisphere. Removal of the region of sky near the galactic plane, or filtering out large-scale modes removes the signal. Analysis of individual frequency maps shows strongest signal in the 41GHz Q band. A study of difference maps tests the hypothesis that the non-Gaussianity is due to residual foregrounds and noise, but shows no significant detection. We suggest that the detection is due to large-scale residual foregrounds affecting more than one frequency band, but a primordial contribution from the Cosmic Microwave Background cannot be excluded.
The decomposition of a signal on the sphere with the steerable wavelet constructed from the second Gaussian derivative gives access to the orientation, signed-intensity, and elongation of the signals local features. In the present work, the non-Gauss ianity of the WMAP temperature data of the cosmic microwave background (CMB) is analyzed in terms of the first four moments of the statistically isotropic random fields associated with these local morphological measures, at wavelet scales corresponding to angular sizes between 27.5 arcminutes and 30 degrees on the celestial sphere. While no detection is made neither in the orientation analysis nor in the elongation analysis, a strong detection is made in the excess kurtosis of the signed-intensity of the WMAP data. The non-Gaussianity is observed with a significance level below 0.5% at a wavelet scale corresponding to an angular size around 10 degrees, and confirmed at neighbour scales. This supports a previous detection of an excess of kurtosis in the wavelet coefficient of the WMAP data with the axisymmetric Mexican hat wavelet (Vielva et al. 2004). Instrumental noise and foreground emissions are not likely to be at the origin of the excess of kurtosis. Large-scale modulations of the CMB related to some unknown systematics are rejected as possible origins of the detection. The observed non-Gaussianity may therefore probably be imputed to the CMB itself, thereby questioning the basic inflationary scenario upon which the present concordance cosmological model relies. Taking the CMB temperature angular power spectrum of the concordance cosmological model at face value, further analysis also suggests that this non-Gaussianity is not confined to the directions on the celestial sphere with an anomalous signed-intensity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا