ﻻ يوجد ملخص باللغة العربية
Angle-resolved photoemission spectroscopy (ARPES) is used to study the energy and momentum dependence of the inelastic scattering rates and the mass renormalization of charge carriers in LiFeAs at several high symmetry points in the Brillouin zone. A strong and linear-in-energy scattering rate is observed for sections of the Fermi surface having predominantly Fe $3d_{xy/yz}$ orbital character on the inner hole and on electron pockets. We assign them to hot spots with marginal Fermi liquid character inducing high antiferromagnetic and pairing susceptibilities. The outer hole pocket, with Fe $3d_{xy}$ orbital character, has a reduced but still linear in energy scattering rate. Finally, we assign sections on the middle hole pockets with Fe $3d_{xz,yz}$ orbital character and on the electron pockets with Fe $3d_{xy}$ orbital character to cold spots because there we observe a quadratic-in-energy scattering rate with Fermi-liquid behavior. These cold spots prevail the transport properties. Our results indicate a strong $it{momentum}$ dependence of the scattering rates. We also have indications that the scattering rates in correlated systems are fundamentally different from those in non-correlated materials because in the former the Pauli principle is not operative. We compare our results for the scattering rates with combined density functional plus dynamical mean-field theory calculations. The work provides a generic microscopic understanding of macroscopic properties of multiorbital unconventional superconductors.
Spatially inhomogeneous electronic states are expected to be key ingredients for the emergence of superconducting phases in quantum materials hosting charge-density-waves (CDWs). Prototypical materials are transition-metal dichalcogenides (TMDCs) and
Here we report an asymmetric suppresion of spectral weight at the Fermi surface around the M points using angle resolved photoemission spectroscopy. The results provide direct evidence for diagonal stripes in the Bi2212 superconductors.
This paper presents a frequentist analysis of the hot and cold spots of the cosmic microwave background data collected by the Wilkinson Microwave Anisotropy Probe (WMAP). We compare the WMAP temperature statistics of extrema (number of extrema, mean
LiFeAs is unique among the broad family of FeAs-based superconductors, because it is superconducting with a rather large $T_csimeq 18$ K under ambient conditions although it is a stoichiometric compound. We studied the electrical transport on a high-
We measured the optical conductivity of superconducting LiFeAs. In the superconducting state, the formation of the condensate leads to a spectral-weight loss and yields a penetration depth of 225 nm. No sharp signature of the superconducting gap is o