ترغب بنشر مسار تعليمي؟ اضغط هنا

Xmm-Newton Observations of the Diffuse X-ray Background

208   0   0.0 ( 0 )
 نشر من قبل Anjali Gupta
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyzed two XMM-Newton observations in the direction of the high density, high latitude, neutral hydrogen cloud MBM20 and of a nearby low density region that we called the Eridanus hole. The cloud MBM20 is at a distance evaluated between 100 and 200 pc from the Sun and its density is sufficiently high to shield about 75% of the foreground emission in the 3/4 keV energy band.The combination of the two observations makes possible an evaluation of the OVII and OVIII emission both for the foreground component due to the Local Bubble,and the background one, due primary to the galactic halo.The two observations are in good agreement with each other and with ROSAT observations of the same part of the sky and the OVII and OVIII fluxes are OVII=3.89+/-0.56 photons cm^-2 s^-1 sr^-1, OVIII=0.68+/-0.24 photons cm^-2 s^-1 sr^-1 for MBM20 and OVII=7.26+/-0.34 photons cm^-2 s^-1 sr^-1,OVIII=1.63+/-0.17 photons cm^-2 s^-1 sr^-1 for the Eridanus hole. The spectra are in agreement with a simple three component model, one unabsorbed and one absorbed plasma component, and a power law, without evidence for any strong contamination from ion exchange in the solar system. Assuming that the two plasma components are in thermal equilibrium we obtain a temperature of 0.096 keV for the foreground component and 0.197 keV for the background one. Assuming the foreground component is due solely to Local Bubble emission we obtain a lower and upper limit for the plasma density of 0.0079 cm^-3 and 0.0095 cm^-3 and limits of 16,200 cm^-3 K and 19,500 cm^-3 K for the plasma pressure, in good agreement with theoretical predictions. Similarly, assuming that the absorbed plasma component is due to Galactic halo emission, we obtain a plasma density ranging from 0.0009 cm^-3 to 0.0016 cm^-3, and a pressure ranging from 3.0*10^3 to 6.7*10^3 cm^-3 K.

قيم البحث

اقرأ أيضاً

68 - A.De Luca IASF-CNR 2002
We present a work in progress aimed at measuring the spectrum of the Cosmic X-ray Background (CXB) with the EPIC detectors onboard XMM-Newton. Our study includes a detailed characterization of the EPIC non X-ray background, which is crucial in making a robust measurement of the spectrum of CXB. We present preliminary results, based on the analysis of a set of Commissioning and Performance Verification high galactic latitude observations.
Aims: We present a study of the diffuse X-ray emission in the halo and the disc of the starburst galaxy NGC 253. Methods: After removing point-like sources, we analysed XMM-Newton images, hardness ratio maps and spectra from several regions in the ha lo and the disc. We introduce a method to produce vignetting corrected images from the EPIC pn data, and we developed a procedure that allows a correct background treatment for low surface brightness spectra, using a local background, together with closed filter observations. Results: Most of the emission from the halo is at energies below 1 keV. In the disc, also emission at higher energies is present. The extent of the diffuse emission along the major axis of the disc is 13.6 kpc. The halo resembles a horn structure and reaches out to ~9 kpc perpendicular to the disc. Disc regions that cover star forming regions, like spiral arms, show harder spectra than regions with lower star forming activity. Models for spectral fits of the disc regions need at least three components: two thermal plasmas with solar abundances plus a power law and galactic foreground absorption. Temperatures are between 0.1 and 0.3 keV and between 0.3 and 0.9 keV for the soft and the hard component, respectively. The power law component may indicate an unresolved contribution from X-ray binaries in the disc. The halo emission is not uniform, neither spatially nor spectrally. The southeastern halo is softer than the northwestern halo. To model the spectra in the halo, we needed two thermal plasmas with solar abundances plus galactic foreground absorption. Temperatures are around 0.1 and 0.3 keV. A comparison between X-ray and UV emission shows that both originate from the same regions.
We present the results of XMM-Newton survey of the northern part of the disk of M31. The results of a spectral and timing analysis of the thirty seven brightest sources are presented. Combining the results of X-ray analysis with available data at oth er wavelengths, we were able to classify ~50%, or 19 out of 37 sources. Two sources in our sample were previously unknown: the hard X-ray source XMMU J004415.8+413057 and a transient supersoft source XMMUJ004414.1+412206. We report the discovery of possible X-ray pulsations from the source XMMUJ004415.8+413057 with a period of 197 s. The spectral and timing properties of XMMU J004415.8+413057 make it first accreting X-ray pulsar candidate detected in M31. We report on the first unambiguous detection of the soft unresolved X-ray emission from the disk of M31. The unresolved emission follows the pattern of the spiral arms and can be traced up to distance of ~0.5 deg (~7 kpc at 760 kpc) from the center of the galaxy. The spectrum of the unresolved emission shows dominant soft thermal component which can be fitted with a ~0.3 keV optically thin thermal plasma emission models. We suggest that significant part of this diffuse soft X-ray component may represent hot diffuse gas in the spiral arms of M31 and emission from normal stars in the disk of M31.
We present the results of two XMM-Newton observations of Jupiter carried out in 2003 for 100 and 250 ks (or 3 and 7 planet rotations) respectively. X-ray images from the EPIC CCD cameras show prominent emission from the auroral regions in the 0.2 - 2 .0 keV band: the spectra are well modelled by a combination of emission lines, including most prominently those of highly ionised oxygen (OVII and OVIII). In addition, and for the first time, XMM-Newton reveals the presence in both aurorae of a higher energy component (3 - 7 keV) which is well described by an electron bremsstrahlung spectrum. This component is found to be variable in flux and spectral shape during the Nov. 2003 observation, which corresponded to an extended period of intense solar activity. Emission from the equatorial regions of Jupiters disk is also observed, with a spectrum consistent with that of solar X-rays scattered in the planets upper atmosphere. Jupiters X-rays are spectrally resolved with the RGS which clearly separates the prominent OVII contribution of the aurorae from the OVIII, FeXVII and MgXI lines, originating in the low-latitude disk regions of the planet.
Context. On the basis of XMM-Newton observations, we investigate the energy balance of selected magnetic cataclysmic variables, which have shown an extreme soft-to-hard X-ray flux ratio in the ROSAT All-Sky Survey. Aims. We intend to establish the X-ray properties of the system components, their flux contributions, and the accretion geometry of the X-ray soft polar QS Tel. In the context of high-resolution X-ray analyses of magnetic cataclysmic variables, this study will contribute to better understanding the accretion processes on magnetic white dwarfs. Methods. During an intermediate high state of accretion of QS Tel, we have obtained 20 ks of XMM-Newton data, corresponding to more than two orbital periods, accompanied by simultaneous optical photometry and phase-resolved spectroscopy. We analyze the multi-wavelength spectra and light curves and compare them to former high- and low-state observations. Results. Soft emission at energies below 2 keV dominates the X-ray light curves. The complex double-peaked maxima are disrupted by a sharp dip in the very soft energy range (0.1-0.5 keV), where the count rate abruptly drops to zero. The EPIC spectra are described by a minimally absorbed black body at 20 eV and two partially absorbed MEKAL plasma models with temperatures around 0.2 and 3 keV. The black-body-like component arises from one mainly active, soft X-ray bright accretion region nearly facing the mass donor. Parts of the plasma emission might be attributed to the second, virtually inactive pole. High soft-to-hard X-ray flux ratios and hardness ratios demonstrate that the high-energy emission of QS Tel is substantially dominated by its X-ray soft component.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا