ﻻ يوجد ملخص باللغة العربية
V405 Peg is a low-luminosity cataclysmic variable (CV) that was identified as the optical counterpart of the bright, high-latitude ROSAT all-sky survey source RBS1955. The system was suspected to belong to a largely undiscovered population of hibernating CVs. Despite intensive optical follow-up its subclass however remained undetermined. We want to further classify V405 Peg and understand its role in the CV zoo via its long-term behaviour, spectral properties, energy distribution and accretion luminosity. We perform a spectral and timing analysis of textit{XMM-Newton} X-ray and ultra-violet data. Archival WISE, HST, and Swift observations are used to determine the spectral energy distribution and characterize the long-term variability. The X-ray spectrum is characterized by emission from a multi-temperature plasma. No evidence for a luminous soft X-ray component was found. Orbital phase-dependent X-ray photometric variability by $sim50%$ occurred without significant spectral changes. No further periodicity was significant in our X-ray data. The average X-ray luminosity during the XMM-Newton observations was L_X, bol simeq 5e30 erg/s but, based on the Swift observations, the corresponding luminosity varied between 5e29 erg/s and 2e31 erg/son timescales of years. The CV subclass of this object remains elusive. The spectral and timing properties show commonalities with both classes of magnetic and non-magnetic CVs. The accretion luminosity is far below than that expected for a standard accreting CV at the given orbital period. Objects like V405 Peg might represent the tip of an iceberg and thus may be important contributors to the Galactic Ridge X-ray Emission. If so they will be uncovered by future X-ray surveys, e.g. with eROSITA.
(Abridged). The cataclysmic binary V405 Peg, originally discovered as ROSAT Bright Source (RBS) 1955 (= 1RXS J230949.6+213523), shows a strong contribution from a late-type secondary star in its optical spectrum, which led Schwope et al. to suggest i
XMM-Newton observations of the accreting, pulsating white dwarf in the quiescent dwarf nova GW Librae were conducted to determine if the non-radial pulsations present in previous UV and optical data affect the X-ray emission. The non-radial pulsation
We report on XMM-Newton and optical results for 6 cataclysmic variables that were selected from Sloan Digital Sky Survey spectra because they showed strong HeII emission lines, indicative of being candidates for containing white dwarfs with strong ma
We present XMM-Newton observations of the eclipsing, disc accreting, cataclysmic variable OY Car which were obtained as part of the performance verification phase of the mission. The star was observed 4 days after an outburst and then again 5 weeks l
We present the first X-ray observations of the eclipsing cataclysmic variables Lanning 386 and MASTER OTJ192328.22+612413.5, possible SW Sextantis systems. The X-ray light curve of Lanning 386 shows deep eclipses, similar to the eclipses seen in the